Supplementary Material

Highly Luminescent and Ultrastability Cesium Lead Halide Perovskite Nanocrystals glass for Plant-growth Lighting Engineering

Jianming Liu, Linli Shen, Ya Chen, Yi Zhao, Yaqian Zhang,

Mengfeifei Jin, Haisheng Yang, Yujie Zhang, Weidong Xiang(*),

Xiaojuan Liang(*)

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325 035, China E-mail: Xiangweidong001@126.com, lxj6126@126.com

Sample	B_2O_3	ZnO	SiO ₂	Na ₂ CO ₃	Cs ₂ CO ₃	PbO	NaCl	NaBr	NaI
CsPbCl ₃	11.50	31.20	34.00	6.30	6.50	4.00	6.50	0	0
CsPbCl ₂ Br ₁	11.50	31.20	34.00	6.30	6.50	4.00	4.33	2.17	0
CsPbCl _{1.5} Br _{1.5}	11.50	31.20	34.00	6.30	6.50	4.00	3.25	3.25	0
$CsPbCl_1Br_2$	11.50	31.20	34.00	6.30	6.50	4.00	2.17	4.33	0
CsPbBr ₃	11.50	31.20	34.00	6.30	6.50	4.00	0	6.50	0
$CsPbBr_2I_1$	11.50	31.20	34.00	6.30	6.50	4.00	0	4.33	2.17
CsPbBr _{1.5} I _{1.5}	11.50	31.20	34.00	6.30	6.50	4.00	0	3.25	3.25
$CsPbBr_1I_2$	11.50	31.20	34.00	6.30	6.50	4.00	0	2.17	4.33
CsPbI ₃	11.50	31.20	34.00	6.30	6.50	4.00	0	0	6.50

Table S1 Specific content of all CsPbX₃(Cl, Br and I) NCs glass samples.

Fig. S1 XRD patterns of the CsPbBr_xI_{3-x} (x= 3, 2, 1.5, 1 and 0) (ICSD-29073 and ICSD-161481).

Fig. S2 PL emission spectra of CsPbBr_xI_{3-X} (x= 3, 2, 1.5, 1 and 0) NCs glass.

Fig.S3 The absorption spectra CsPbBr_x I_{3-X} (x= 3, 2, 1.5, 1 and 0) NCs glass.

Fig. S4 (a) $CsPbBr_2I_1 NCs$ glass exposure to the environment with 85 % RH at 85 °C, (b) Thermal cycling measurements of $CsPbBr_2I_1 NCs$ glass. High set point temperatures are highlighted in red for clarity. (c) $CsPbBr_2I_1 NCs$ glass under the UVlamp with different exposure times and the corresponding PL intensity.

Fig. S5 Tg-DSC curves of CsPbX₃ QDs glass.

Fig. S6 Time-resolved PL decay profiles of CsPbX₃ (X=Cl and Br) NCs glasses.