Electronic Supplementary Information (ESI) for:

Non-Halogenated Solution-Processed Ambipolar Plastic Transistors Based on Conjugated Polymers Prepared by Asymmetric Donor Engineering

Inho Song,^{‡a} Hyun-Woo Kim,^{‡b} Jaeyong Ahn,^a Myeonggeun Han,^c Soon-Ki Kwon,^b Yun-Hi Kim, ^{*d} and Joon Hak Oh^{*a}

^aSchool of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea

^bDepartment of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea

^cDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea

^dDepartment of Chemistry and RIGET, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea

[‡]Inho Song and Hyun-Woo Kim equally contributed to this work.

Supplementary Contents

Synthesis	procedure of	conjugated	polymers		S	4
-----------	--------------	------------	----------	--	---	---

Supplementary Figures

¹ H-NMR of 2-bromo-thieno[3,2-b]thiophene (1) (Fig. S1)	S9
¹ H-NMR of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2) (Fig. S2)	S9
¹³ C-NMR of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2) (Fig. S3)	S10
Mass spectrum of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2) (Fig. S4)	S10
¹ H-NMR of trimethyl(5-(5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)th	iophen-2-
yl)stannane (3) (Fig. S5)	S11
¹ H-NMR of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4) (Fig. S6)	S11
¹³ C-NMR of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4) (Fig. S7)	S12
Mass spectrum of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4) (Fig. S8)	S12
¹ H-NMR of trimethyl(5-(5-(trimethylstannyl)selenophen-2-yl)thieno[3,2-b]th	niophen-2-
yl)stannane (5) (Fig. S9)	S13
¹ H-NMR of P29DPP-TTTh (Fig. S10)	S13
¹ H-NMR of P29DPP-TTSe (Fig. S11)	S14
GPC data of P29DPP-TTTh (Fig. S12)	S15
GPC data of P29DPP-TTSe (Fig. S13)	S15
TGA and DSC thermograms of P29DPP-TTTh (Fig. S14)	S16
TGA and DSC thermograms of P29DPP-TTSe (Fig. S15)	S16
Output characteristics of OFETs in different solvent processing (Fig. S16)	S17
Electrical characteristics of OFETs based on P29DPP-TTTh polymer films usin	ng additive
(Fig. S17)	S18
Voltage transfer characteristics of CMOS-like inverter characteristics (Fig. S18)	S19

2D-GIXD profiles of P29DPP-TTTh polymer films (Fig. S19)	S20
2D-GIXD images of P29DPP-TTTh polymer films using <i>o</i> -xylene (Fig. S20)	S21
AFM topography images of polymer films (Fig. S21)	S22

Supplementary Tables

Solubility test results for P29DPP-TTTh and P29DPP-TTSe polymers (Table S1) S23
Summary of optical and electrical characterization of polymers (Table S2) S24
Literature table for comparison of charge transport mobility in OFETs using nonchlorinated
solvent processing (Table S3) S25
Crystallographic parameters of polymer films (Table S4) S26

Synthesis procedure of conjugated polymers

Scheme S1. Scheme for synthesis procedure of conjugated polymers.

Synthesis of 2-bromo-thieno[3,2-b]thiophene (1)

Thieno[3,2-b]thiophene (0.50 g, 0.35 mmol) was dissolved in 5.0 mL N,Ndimethylformamide (DMF) and cooled to 0 °C. A solution of N-bromosuccinimide (NBS) (0.65 g, 0.36 mmol) in 8.5 mL of DMF was added. After stirring for 3 h at 0 °C, ice-water (25 mL) was added to the solution. The resulting mixture was extracted with 1,2-dichloromethane (60 mL x 3). The extracts were washed with water, dried over anhydrous magnesium sulfate (MgSO₄), and evaporated. The crude product was purified by silica gel chromatography with *n*-hexane, to give colorless oil (0.374 g, 47%). ¹H-NMR (300 MHz, CD₂Cl₂): 7.48-7.47 (d, 1H, J=5.3Hz), 7.34 (s, 1H), 7.24-7.22 (d, 1H, J=5.3Hz).

Synthesis of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2)

The mixture of compound (1) (2.0 g, 0.91 mmol), tributyl(thiophen-2-yl)stannane (4.4 g, 1.1 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.52 g, 0.045 mmol) in dry DMF (40 mL) was heated under nitrogen at 90 °C for 3 h. After the reaction was cooled to room temperature, water (100 mL) was added to the solution. The resulting mixture was extracted with CH_2Cl_2 (180 mL x 3). The extracts were washed with water, dried over MgSO₄, and evaporated. The crude product was purified by silica gel chromatography with *n*-hexane, to give white solid powder (1.15 g. 56%). ¹H-NMR (300 MHz, DMSO): 7.68 (d, 1H, J=0.9Hz), 7.68-7.66 (d, 1H, J=3.8Hz) 7.56 (d, 1H, J=6.3Hz), 7.44 (d, 1H, J=5.9Hz), 7.36 (d, 1H, J=4.8Hz), 7.13-7.11 (q. 1H, J=3.6Hz, J=5.1Hz). ¹³C-NMR (DMSO, ppm): 139.9, 138.5, 137.9, 137.2, 128.9, 128.8, 126.3, 124.7, 120.4, 116.8. HRMS (EI⁺): Calcd. for C₁₀H₆S₃: 221.9632. Found : (M⁺) 221.9636.

Synthesis of trimethyl(5-(5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)thiophen-2yl)stannane (3)

Compound (2) (1.0 g, 0.44 mmol) was dissolved in anhydrous THF (30 mL) under nitrogen, and was cooled to -78°C. After n-butyl lithium (3.95 mL, 0.98 mmol, 2.5 M in hexane) was slowly added to the solution, trimethyltin chloride (9.89 mL, 0.98 mmol, 1.0 M in hexane) was then added, and the solution was stirred for 12 h at room temperature. The solution was poured into ice-water, and extracted with diethyl ether (100 mL x 3). The extracts were washed with water, dried over MgSO₄, and evaporated. The crude product, which was then purified by recrystallization from diethyl ether, and ethanol (12 mL, 3 mL) to give blue solids (0.65 g, 26%), ¹H-NMR (300 MHz, CD₂Cl₂): 7.17 (d, 1H, J=0.5Hz). 7.15 (d, 1H, J=3.4Hz), 7.08 (d, 1H, J=0.7Hz), 6.95-6.94 (d, 1H, J=3.4Hz), 0.23-0.21 (d, 18H, 4.7Hz).

Synthesis of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4)

The solution of compound (1) (2.0 g, 0.912 mmol) and tributyl(selenophene-2-yl)stannane (4.98 g, 1.18 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.52 g, 0.045 mmol) in dry toluene (35 mL) was heated under nitrogen at 110°C for 12 h. After the reaction was cooled to room temperature, water (100 mL) was added to the solution. The resulting mixture was extracted with CH₂Cl₂ (180 mL x 3). After the extracts were washed with water, dried over MgSO₄, and evaporated. The crude product was purified by silica gel chromatography with n-hexane, to give white solid powder (1.6 g. 65%). ¹H-NMR (300 MHz, DMSO): 8.15 (d, 1H, J=6.7Hz), 7.68-7.65 (t, 2H, J=6.5Hz), 7.46 (d, 1H, J=4.9Hz), 7.42 (d, 1H, J=5.9Hz), 7.32-7.29 (q, 1H, J=3.8Hz, J=5.6 Hz). ¹³C-NMR (DMSO, ppm): 142.48, 141.04, 139.96, 138.02, 132.13, 130.95, 128.94, 126.63, 120.51, 117.42. HRMS (EI⁺): Calcd. for C₁₀H₆S₂Se: 269.9076. Found : (M⁺) 269.9075.

Synthesis of trimethyl(5-(5-(trimethylstannyl)selenophen-2-yl)thieno[3,2-b]thiophen-2-yl)stannane (5)

Compound (4) (1.8 g, 0.81 mmol) and TMEDA (2.67 mL, 1.78 mmol) were dissolved in anhydrous THF (60 mL) under nitrogen and was cooled to 0°C. n-Butyl lithium (7.76 mL, 1.94 mmol, 2.5 M in hexane) was slowly added. The reaction mixture was heated to reflux for 1 h. After the reaction was cooled to 0°C, trimethyltin chloride (17.81 mL, 1.78 mmol, 1.0 M in hexane) was added, and the solution was stirred for 12 h at room temperature. The solution was poured into ice-water, and extracted with diethyl ether (180 mL x 3). The extracts were washed with water, dried over MgSO₄, and evaporated. The crude product was then purified by recrystallization diethyl ether, and ethanol (20 mL, 5 mL) to give brown solids (2.0 g, 50%). ¹H-NMR (300 MHz, CD₂Cl₂): 7.29-7.28 (d, 1H, J=3.6Hz), 7.25-7.24 (d, 1H, J=3.6Hz), 7.13 (s, 1H), 7.08 (d, 1H, J=0.7Hz), 0.24-0.21 (d, 18H, J=7.2Hz).

Synthesis of P29DPP-TTTh

The polymer was prepared using a palladium-catalyzed Stille coupling reaction. In a Schlenk flask 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(7-decylnonadecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (0.50 g 0.0004 mol) and compound (3) (0.172 g 0.0004 mmol) were dissolved in dry chlorobenzene (6.0 mL). After degassing under nitrogen for 60 min, Pd₂(dba)₃ (0.007 mg, 2 mol%) and P(o-Tol)₃ (0.095 g/8 mol%) were added to the mixture, which was then stirred for 48 h at 110°C. 2-Bromothiophen and tributyl(thiophen-2-yl)stannane were injected sequentially into the reaction mixture for end-capping, and the solution was stirred for 6 h after each addition. The polymer was precipitated in methanol. The crude polymer was collected by filtration and purified by Soxhlet extraction with methanol, hexane, and toluene, poly[2,5-bis(7-decylnonadecyl)-3-(5-(5-(thiophen-2successively. The final product. yl)thieno[3,2-b]thiophen-2-yl)+6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione] (P-29-TT-Th) was obtained by precipitation in methanol. Yield : 0.305 g (56.9%). (*M*_n =40.59 KDa, *M*_w =55.57 KDa, PDI =1.36). ¹H NMR (500 MHz), δ(ppm) : 8.9 (br , 4H), 7.3-6.8 (br, 8H), 4.5-4.0 (br, 4H), 3.2--0.5 (br, 114H)

Synthesis of P29DPP-TTSe

The polymer was prepared using a palladium-catalyzed Stille coupling reaction. In a Schlenk flask 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(7-decylnonadecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (0.50 g 0.0004 mol) and compound (5) (0.187 g 0.0004 mmol) were dissolved in dry chlorobenzene (6.0 mL). After degassing under nitrogen for 60 min, Pd₂(dba)₃ (0.007 mg, 2 mol%) and P(o-Tol)₃ (0.095 g/ 8 mol%) were added to the mixture, which was then stirred for 48 h at 110°C. 2-Bromothiophen and tributyl(thiophen-2-yl)stannane were injected sequentially into the reaction mixture for end-capping, and the solution was stirred for 6 h after each addition. The polymer was precipitated in methanol. The crude polymer was collected by filtration and purified by Soxhlet extraction with methanol, hexane, and toluene, successively. The final product, poly[2,5-bis(7-decylnonadecyl)-3-(5-(5-(selenophen-2yl)thieno[3,2-b]thiophen-2-yl)thiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione] (P-29-TT-Se) was obtained by precipitation in methanol. Yield : 0.255 g (45. 9%). (M_n =33.90 KDa, M_w = 44.32 KDa, PDI =1.31). ¹H NMR (500 MHz), δ (ppm) : 8.9 (br , 4H), 7.3-6.8 (br, 8H), 4.5-4.0 (br, 4H), 3.2--0.5 (br, 114H)

Fig. S1 ¹H-NMR of 2-bromo-thieno[3,2-b]thiophene (1).

Fig. S2 ¹H-NMR of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2).

Fig. S3 ¹³C-NMR of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2).

Fig. S4 Mass spectrum of 2-(thiophen-2-yl)thieno[3,2-b]thiophene (2).

Fig. S5 ¹H-NMR of trimethyl(5-(5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)thiophen-2-yl)stannane (3).

Fig. S6 ¹H-NMR of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4).

Fig. S7 ¹³C-NMR of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4).

Fig. S8 Mass spectrum of 2-(selenophen-2-yl)thieno[3,2-b]thiophene (4).

Fig. S9 ¹H-NMR of trimethyl(5-(5-(trimethylstannyl)selenophen-2-yl)thieno[3,2-b]thiophen-

2-yl)stannane (5).

Fig. S10 ¹H-NMR of P29DPP-TTTh.

Fig. S11 ¹H-NMR of P29DPP-TTSe.

Fig. S12 GPC data of **P29DPP-TTTh**. The molecular weight and polydispersity index of the copolymers were determined with a polystyrene standard calibration (Waters high-pressure GPC assembly model M515 pump, *u*-Styragel columns of HR4, HR4E, HR5E with 500 and 100 Å refractive index detectors, and THF solvent).

Fig. S13 GPC data of **P29DPP-TTSe**. The molecular weight and polydispersity index of the copolymers were determined with a polystyrene standard calibration (Waters high-pressure GPC assembly model M515 pump, *u*-Styragel columns of HR4, HR4E, HR5E with 500 and 100 Å refractive index detectors, and THF solvent).

Fig. S14 TGA and DSC thermograms of **P29DPP-TTTh**. TGA analysis was performed in a nitrogen atmosphere at a rate of 10°C min⁻¹. DSC analysis was conducted in nitrogen at a rate of 10°C min⁻¹ from 30°C to 320°C.

Fig. S15 TGA and DSC thermograms of **P29DPP-TTSe**. TGA analysis was performed in a nitrogen atmosphere at a rate of 10°C min⁻¹. DSC analysis was conducted in nitrogen at a rate of 10°C min⁻¹ from 30°C to 320°C.

Fig. S16 (a–c) Output characteristics of OFET based on **P29DPP-TTTh** polymer films using (a) chlorobenzene, (b) toluene, and (c) *o*-xylene solution after optimal thermal annealing at 250°C. (d–f) Output characteristics of OFET based on **P29DPP-TTSe** polymer films using (d) chlorobenzene, (e) toluene, and (f) *o*-xylene solution after optimal thermal annealing at 250°C. The interval of the gate voltage was 10 V.

Fig. S17 (a) Transfer characteristics and (b) output characteristics of OFET based on **P29DPP-TTTh** polymer films using toluene and DMSO additive after optimal thermal annealing at 250°C. (c) Transfer characteristics and (d) output characteristics of OFET based on **P29DPP-TTTh** polymer films using *o*-xylene and DMSO additive after optimal thermal annealing at 250°C. In transfer curves, the left and right panels indicate the results of hole- and electron-enhancement operations with $V_{\rm DS} = -100$ and +150 V, respectively. Solid green, orange, and dotted grey fitting lines indicate the region for maximum mobility estimation, mobility at kinks and considering the reliability factor (*r*), respectively. In the output curves, the interval of the gate voltage was 10 V.

Fig. S18 Voltage transfer characteristics of CMOS-like inverter characteristics of P29DPP-TTSe inverters processed in toluene and DMSO additive solution at different V_{DD} ranging from 100 V down to 25 V.

Fig. S19 2D-GIXD images of **P29DPP-TTTh** polymer films using (a) chlorobenzene, (b) toluene, (c) *o*-xylene, and (d) toluene with DMSO additive after optimal thermal annealing at 250°C. (e, f) The corresponding 1D-GIXD profiles of (e) out-of-plane and (f) in-plane GIXD patterns of **P29DPP-TTTh** polymer films in different processing solvent. (g, h) The corresponding 1D-GIXD profiles of (g) out-of-plane and (h) in-plane GIXD patterns of **P29DPP-TTTh** polymer films with the DMSO additive treatment.

Fig. S20 2D-GIXD images of **P29DPP-TTTh** polymer films using (a) *o*-xylene and (b) *o*-xylene with DMSO additive after optimal thermal annealing at 250°C. 2D-GIXD images of **P29DPP-TTSe** polymer films using (c) *o*-xylene and (d) *o*-xylene with DMSO additive after optimal thermal annealing at 250°C.

Fig. S21 AFM topography images of (a) **P29DPP-TTTh** and (b) **P29DPP-TTSe** polymer films using different processing solvents after optimal thermal annealing at 250°C (Scale bar = 500 nm).

Table S1. Solubility test results for **P29DPP-TTTh** and **P29DPP-TTSe** polymers. The solubility was tested by checking the solution with a concentration of 0.5 wt% mL⁻¹.

Material	Acetone	МеОН	THF	Toluene	Xylene	Tetralin	CHCl ₃	CB	DCB
P29DPP- TTTh	×	×	0	0	0	0	0	0	0
P29DPP- TTSe	×	×	0	0	0	0	0	0	0

Material	UV _{max} -S ^a (nm)	UV _{max} -F ^b (nm)	UV _{max} -ann ^c (nm)	UV-edge (nm)	Bandgap (eV)	HOMO (eV)	LUMO (optical)((eV)	LUMO electrochemical)) (eV)
P29DPP- TTTh	788 448	793 712 448	716, 790	910	1.36	-5.38	-4.02	-3.64
P29DPP- TTSe	802 448	803 723 448	724, 703	928	1.33	-5.37	-4.04	-3.63

Table S2. Summary of optical and electrical characterization for **P29DPP-TTTh** and**P29DPP-TTSe** polymers.

^ain dilute toluene solution

^bsolid thin-film states on a quartz plate before thermal annealing

^csolid thin-film states on a quartz plate after thermal annealing at 200°C

Reference	Solvent	Material	$\mu_{h,gca}$	$\mu_{e,gca}$
(11)	Toluene/DMSO	P29DPP-TTTh	4.29	0.57
(This work)	Toluene/DMSO	P29DPP-TTSe	6.36	0.71
Adv. Funct. Mater. 2014, 24, 3524–3534	THN/p-xylene	PTDPPTFT4	3.94	-
A. M. M 2015 27 2020 2021	THF	PDPP-TVS-C24	3.0	-
Aav. Mater. 2015, 27, 3020–3031	Tetralin	PDPP-TVS-C29	8.2	-
ACS Appl. Mater. Interfaces 2017,	Toluene	PTDPPTT-Si	1.54	-
9, 15652–15661	Toluene	PFDPPTT-Si	1.55	-
ACS Appl. Mater. Interfaces. 2016, 8, 24325–24330	Hexane	PDPPF-DFT	0.26	0.12
	Tetralin	P-DPP-BTT(1)-SVS(9)	3.7	0.62
Aav. Mater. 2014, 20, 6612–6616	Tetralin	P-DPP-BTT(3)-SVS(7)	3.1	0.49
Adv. Funct. Mater. 2015, 25, 4844–4850	Ethanol	P-DPP-TT(7)-SVS(3)	1.03	-
ACS Nano 2015, 9, 5264–5274	THF	DPPBTSPE	1.53	-
ACS Appl. Mater. Interfaces 2017, 9, 28817–28827	TMB	PDPP2DT-F2T2	1.28	0.39
Chem. Mater. 2013, 25, 782–789	<i>p</i> -xylene	PTDPPTFT4	2.1	-
Macromolecules 2014 , 47, 8602–8610	TMB/1- methylnaphthalene	pDTTG-DTBT	0.26	-
Macromol. Rapid Commun. 2018 , 39, 1800225	Toluene	PTTFDPP-TT	0.12	-
Org. Electron. 2015, 23, 193–198	d-limonene	$FBT-Th_4$	1.06	-
1 1. Martin 2016 28 042 050	TMB/DPE	PDPPTT-2T	6.21	-
Aav. Maler. 2010, 28, 943–950	TMB/DPE	PDPPMT-2T	10.89	-

 Table S3. Literature table for comparison of charge transport mobility in OFETs using nonchlorinated solvent processing.

Materials	Solvent	Additive	q _{z,(100)} [Å ⁻¹]	<i>d</i> _{z,(100)} [Å]	FWHM _{xy,(100}	$L_{c,z(h00)}$ [Å]	<i>q</i> _{xy,(010)} [Å ⁻¹]	<i>d</i> _{xy,(010)} [Å]
	CB	-	0.210	28.89	0.0255	221.4	1.720	3.65
	m 1	-	0.219	28.67	0.0296	190.8	1.731	3.63
P29DPP- TTTh	Toluene	additive	0.223	28.19	0.0331	170.9	1.737	3.62
	o-xylene	-	0.218	28.77	0.0304	185.9	1.737	3.62
		additive	0.218	28.87	0.0314	180.0	1.730	3.63
	CB	-	0.208	28.88	0.0299	228.5	1.716	3.66
	Toluene	-	0.224	27.96	0.0264	214.6	1.720	3.65
P29DPP- TTSe		additive	0.222	29.24	0.0286	197.8	1.727	3.64
	o-xylene	-	0.223	28.12	0.0272	208.2	1.721	3.65
		additive	0.217	28.89	0.0310	182.7	1.731	3.63

Table S4. Crystallographic parameters of **P29DPP-TTTh** and **P29DPP-TTSe** polymer filmsafter optimal thermal annealing at 250°C.