Electronic supplementary information

Excellent Bipolar Host Material Exhibiting EQE of 24.0% with Small Efficiency Roll-off in Solution-processable Thermally Activated Delayed Fluorescence OLEDs

Mallesham Godumala, Jiwon Yoon, Cheol Hun Jeong, Chiho Lee, Ji-Eun Jeong, Sungnam Park, Han Young Woo, Min Ju Cho and Dong Hoon Choi*

Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

E-mail: <u>dhchoi8803@korea.ac.kr</u>; Fax: +82-2-925-4284, Tel: +82-2-3290-3140.

Figures and Tables

Fig. S1 TGA (a) and DSC (b) thermograms of APC.

Fig. S2 AFM (a) topography and (b) phase images (5 \times 5 µm) of **APC**:t4CzIPN blend film (6.0 wt%).

Fig. S3 UV-Vis absorption and photoluminescence spectra of APC in different polar solvents.

Host	Hexane ^{a/b} (nm)	Toluene ^{// b} (nm)	THF ^{a/b} (nm)	Chloroform ^{a/b} (nm)
APC	290, 317, 333/390	292, 321, 334/403	292, 320, 334/414	292, 320, 334/429
^a Absorban	nce. ^b PL value			

Table S2. Photophysical properties and kinetic parameters of t4CzIPN-doped (6.0 wt%) APC films.

Comp.	$k_{p}(x10^{7} s^{-1})^{a}$	k _d (x10 ⁵ s ⁻¹) ^b	$k_{r}^{s}(x10^{7} s^{-1})^{c}$	$k_{ISC} (x10^7 s^{-1})^d$	$k_{RISC} (x10^{5} s^{-1})^{e}$	$k_{nr}^{T} (x10^{5} s^{-1})^{f}$
ΑΡΟ	3.96	3.4	0.41	3.55	27	0.61
^{<i>a</i>} Prompt emission rate constant. ^{<i>b</i>} Delayed emission rate constant. ^{<i>c</i>} Radiative decay rate constant of the singlet excited						

^a Prompt emission rate constant. ^a Delayed emission rate constant. ^c Radiative decay rate constant of the singlet excited state. ^d Intersystem crossing rate constant. ^e Reverse intersystem crossing rate constant. ^f Non-radiative decay rate constant for triplet excited state.

Fig. S4 Cyclic voltammogram of the APC in the film state (inset shows the corresponding plot of ferrocene).

Fig. S5 Hole only and electron devices of APC.

Fig. S6 (a) UV–Vis absorption spectrum of t4CzIPN emitter and PL spectrum of **APC** host in the film state, and (b) PL spectrum of t4CzIPN in the film state.

Fig. S7 Energy level diagram and chemical structures of the materials used in this study.

S. No.	Host	Dopant	EQE _{max} (%)	EQE ₅₀₀ (%)	EQE ₁₀₀₀ (%)	Roll-off (%)ª	Reference
1.	APC	t4CzIPN	24.0	23.1	21.7	9.6	Present work
2.	CBP	TBP-DMA	22.1		20.3	8.0	1
3.	DCzPPy	DACT-II	30.8	29.0	27.0	12.0	2
4.	SiCz	t4CzIPN	18.3	~15.0	12.0	34	3
5.	mCPDPO	t4CzIPN	18.8	16.6	12.4	34	4
6.	mCP	4CzIPN	21.0	<16.0	<16.0	>24	5
7.	Cz-3CzCN	CzCzCN	23.8	~17.0	12.6	47	6
8.	Cz-3CzCN	Cz-4CzCN	23.5	~12.0	7.8	67	6
9.	mCP	COPO1	20.1	~10.0	~3.0	~85	7
10.	TPA-3/PO-T2T	9PhFDPhTz	24.0	15.5	10.1	58.0	8
11.	PVK:OXD-7	5	23.8	~18.0	16.5	31	9
12.	DPOBBPE	5CzCN	25.8	~19.0	~12.0	~53	10
13.	SiCz	4CzFCN	20.0	<1.0			11
14.	CzSi	MA-TA	22.1				12

Table S3. Comparison of the state-of-the-art performing solution-processed TADF OLEDs.

 $^{\it a}$ Roll-off from maximum value to 1000 cd m $^{\rm 2}$ brightness.

Table S4. Comparison of the maximum performance and roll-off behavior at 1000 cd m⁻² for t4CzIPN emitter fabricated through the solution as well as vacuum process.

S. No.	Host	Dopant	Fabrication process	EQE _{max} (%)	EQE ₁₀₀₀ (%)	Roll-off (%)	Reference
1.	APC	t4CzIPN	Solution	24.0	21.7	9.6	Present work
2.	IAPC	t4CzIPN	Solution	19.2	17.5	9.0	13
3.	SiCT	t4CzIPN	Solution	19.2	12.4	36.0	14
4.	mCPDPO	t4CzIPN	Solution	18.8	12.4	34.0	4
5.	SiCz	t4CzIPN	Solution	18.3	12.0	34.0	3
6.	SiCz	t4CzIPN	Vacuum	17.1	13.5	21.0	3
7.	PE-PCzP	t4CzIPN	Solution	17.1	16.5	4.0	15

References

- X. Cai, D. Chen, K. Gao, L. Gan, Q. Yin, Z. Qiao, Z. Chen, X. Jiang and S.-J. Su, *Adv. Funct. Mater.*, 2018, 28, 1704927-1704935.
- 2. K.-W. Tsai, M.-K. Hung, Y.-H. Mao and S.-A. Chen, Adv. Funct. Mater., 2019, 29, 1901025.
- 3. Y. J. Cho, K. S. Yook and J. Y. Lee, Adv. Mater., 2014, 26, 6642-6646.
- M. Godumala, S. Choi, S. K. Kim, S. W. Kim, J. H. Kwon, M. J. Cho and D. H. Choi, *J. Mater. Chem. C*, 2018, 6, 10000-10019.
- 5. T. Zhou, G. Xie, S. Gong, M. Huang, J. Luo and C. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 34139-34145.
- 6. X. Ban, A. Zhu, T. Zhang, Z. Tong, W. Jiang and Y. Sun, Chem. Commun., 2017, 53, 11834-11837.
- 7. Z. Ren, R. S. Nobuyasu, F. B. Dias, A. P. Monkman, S. Yan and M. R. Bryce, *Macromolecules*, 2016, **49**, 5452-5460.
- J. Zhao, C. Zheng, Y. Zhou, C. Li, J. Ye, X. Du, W. Li, Z. He, M. Zhang, H. Lin, S. Tao and X. Zhang, *Mat. Horizons*, 2019, DOI: 10.1039/c9mh00373h.
- W.-P. To, D. Zhou, G. S. M. Tong, G. Cheng, C. Yang and C.-M. Che, Angew. Chem. Int. Ed., 2017, 56, 14036-14041.
- 10. S. K. Jeon, H.-J. Park and J. Y. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 5700-5705.
- 11. Y. J. Cho, B. D. Chin, S. K. Jeon and J. Y. Lee, Adv. Funct. Mater., 2015, 25, 6786-6792.
- 12. Y. Wada, S. Kubo and H. Kaji, Adv. Mater., 2018, 30, 1705641-1705648.
- 13. C. H. Jeong, M. Godumala, J. Yoon, S. Choi, Y. W. Kim, D. H. Choi, M. J. Cho and D. H. Choi, *ACS Appl. Mater. Interfaces*, 2019, **11**, 17602-17609.
- 14. S. Choi, J. Yoon, M. Godumala, H. J. Kim, S. H. Park, S. K. Kim, H. Lee, J. H. Kwon, M. J. Cho and D. H. Choi, *Dyes Pigments*, 2019, **167**, 120-126.
- 15. S. Shao, S. Wang, X. Xu, Y. Yang, J. Lv, J. Ding, L. Wang, X. Jing and F. Wang, *Macromolecules*, 2019, **52**, 3394-3403.