## **Supporting Information**

# Inorganic Perovskite Engineering Through Incorporation of Carboxylic Acid Containing Ligand for Performance Enhancement in Perovskite Light-Emitting Diodes

Jiayue Chen, Xiaojie Chen, Dongyu Ma, Guangfu Li, Juan Zhao, Dongxia Zhu, Zhenguo Chi

#### **Emails of corresponding authors:**

zhudx047@nenu.edu.cn; chizhg@mail.sysu.edu.cn; zhaoj95@mail.sysu.edu.cn

### **1 Experimental**

**1.1 Materials:** Cesium bromide (CsBr), lead (II) bromide (PbBr<sub>2</sub>), poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 4083), 1,3,5-tris(Nphenylbenzimidazol-2-yl)benzene (TPBI) and phenmethylammonium bromide (PMABr) were used as purchased from Xi'an Polymer Light Technology Corp., 4-(Aminomethyl)benzoic acid (97%) was purchased from Aladdin. Hydrobromic acid (HBr) was purchased from Fuchen (Tianjin) Chemical Reagents Co. Ltd., dimethyl sulfoxide (DMSO) was purchased from J&K Scientific Ltd., tetrahydrofuran (THF), ethanol and toluene were purchased from Guangzhou Chemical Reagent Factory. All materials were used without further purification.

**1.2 Device Fabrication and Characterization**. Indium tin oxide (ITO)-coated glass substrates were ultrasonically cleaned prior to  $O_2$  plasma treatment. Subsequently, PEDOT:PSS was spin-coated on the treated ITO at a speed of 3000 rpm for 60 s, following by thermal annealing for 30 min at 150 °C under atmospheric environment, then the substrates were treated with  $O_2$  plasma again for 15 s to make the surface more hydrophilic. After that, the substrates were transferred into a glovebox and the

perovskite precursor solutions were spin-coated onto the PEDOT:PSS films at 5500 rpm for 50 s and annealed at 65 °C for 20 min. Then, the perovskite-coated substrates were transferred to a thermal evaporation chamber, wherein organic and metal cathode layers were sequentially deposited under vacuum pressure of  $3 \times 10^{-4}$  Pa, leading to an active area of 9 mm<sup>2</sup>. The current density–voltage–luminance characteristics and electroluminescence (EL) spectra of PeLEDs were measured using a Keithley 2400 source combined with a Photo Research PR735 spectrometer under room temperature, while external quantum efficiency (EQE) was calculated based on a computer program.

#### 2. Supplementary tables and figures

| Perovskite                                           | λ    | $B_1$ | $	au_1$ | B <sub>2</sub> | $	au_2$ | B <sub>3</sub> | $	au_3$ | $	au_{ m avg}$ |
|------------------------------------------------------|------|-------|---------|----------------|---------|----------------|---------|----------------|
|                                                      | (nm) | (%)   | (ns)    | (%)            | (ns)    | (%)            | (ns)    | (ns)           |
| CsPbBr <sub>3</sub>                                  | 520  | 4.74  | 6.50    | 6.12           | 201.64  | 89.14          | 0.33    | 12.94          |
| x=1.0                                                | 517  | 38.57 | 0.82    | 40.52          | 8.99    | 20.91          | 49.08   | 14.22          |
| x=1.5                                                | 516  | 37.18 | 6.97    | 12.27          | 153.28  | 50.55          | 1.54    | 22.17          |
| x=2.0                                                | 514  | 27.30 | 17.36   | 34.55          | 147.23  | 38.15          | 0.66    | 55.86          |
| x=2.5                                                | 507  | 31.03 | 11.53   | 15.10          | 186.41  | 53.87          | 1.88    | 32.74          |
| (PMA) <sub>2</sub> CsPb <sub>2</sub> Br <sub>7</sub> | 466  | 14.14 | 7.67    | 10.97          | 94.53   | 74.89          | 0.81    | 12.06          |
|                                                      | 517  | 20.26 | 8.97    | 27.99          | 120.39  | 51.75          | 0.92    | 35.99          |

 Table S1 TRPL characteristics of perovskite films.

The TRPL profiles were fitted by a three-exponential decay model as  $I(\tau)=B_1 \cdot \exp(-t/\tau_1)$ +  $B_2 \cdot \exp(-t/\tau_2) + B_3 \cdot \exp(-t/\tau_3)$ , wherein  $\tau_1$ ,  $\tau_2$ ,  $\tau_3$  are the lifetimes of the first, second and third components, respectively;  $B_1$ ,  $B_2$ ,  $B_3$  are the proportions of the first, second and third lifetime components, respectively, and  $B_1 + B_2 + B_3 = 1$ . The average lifetime ( $\tau_{avg}$ ) was calculated by  $\tau_{avg} = (B_1 \cdot \tau_1 + B_2 \cdot \tau_2 + B_3 \cdot \tau_3)/(B_1 + B_2 + B_3)$ .

|                                                      |                    |                       |                   |                 | -                 |                  |
|------------------------------------------------------|--------------------|-----------------------|-------------------|-----------------|-------------------|------------------|
| Device                                               | $\lambda_{EL}{}^a$ | $L_{max}^{b}$         | $CE_{max}^{c}$    | $EQE_{max}^{d}$ | FWHM <sup>e</sup> | CIE <sup>f</sup> |
|                                                      | (nm)               | (cd m <sup>-2</sup> ) | $(cd A^{-1})$ (%) |                 | (nm)              | (x, y)           |
| CsPbBr <sub>3</sub>                                  | 520                | 205                   | 0.08              | 0.02            | 22                | 0.136,0.730      |
| x=1.0                                                | 515                | 949                   | 0.61              | 0.12            | 25                | 0.090, 0.716     |
| x=1.5                                                | 514                | 1641                  | 0.93              | 0.29            | 25                | 0.101, 0.725     |
| x=2.0                                                | 514                | 8692                  | 5.27              | 1.61            | 25                | 0.096, 0.723     |
| x=2.5                                                | 508                | 2985                  | 1.29              | 0.40            | 26                | 0.074, 0.620     |
| (PMA) <sub>2</sub> CsPb <sub>2</sub> Br <sub>7</sub> | 515                | 1765                  | 0.93              | 0.33            | 23                | 0.107,0.732      |

**Table S2** Electrical performance of the PeLEDs based on CsPbBr<sub>3</sub>, (HOOC-PMA)<sub>x</sub>CsPb<sub>2</sub>Br<sub>(5+x)</sub> (x=1.0, 1.5, 2.0, 2.5), and (PMA)<sub>2</sub>CsPb<sub>2</sub>Br<sub>7</sub> perovskites.

<sup>a</sup>EL peak wavelength, <sup>b</sup>maximum luminance, <sup>c</sup>maximum current efficiency, <sup>d</sup>maximum external quantum efficiency, <sup>e</sup>full width at half maximum, <sup>f</sup>1931 CIE coordinates at a voltage of 6 V.



**Figure S1.** Current density–voltage curves for (a) hole-only and (b) electron-only devices. Inset: device configurations of the hole-only and electron-only devices.



Figure S2. UV-vis absorption and PL spectra of (PMA)<sub>2</sub>PbBr<sub>4</sub> film.



Figure S3. XRD profiles of CsPbBr<sub>3</sub>, (PMA)<sub>2</sub>PbBr<sub>4</sub> and (PMA)<sub>2</sub>CsPb<sub>2</sub>Br<sub>7</sub> perovskites.