Supporting information

Interface Engineered reliable HfO₂-based RRAM for Synaptic Simulation

Qiang Wang¹, Gang Niu^{1*}, Sourav Roy¹, Yankun Wang¹, Yijun Zhang¹, Heping Wu¹, Shijie Zhai¹,

Wei Bai¹, Peng Shi¹, Sannian Song², Zhitang Song², Ya-Hong Xie³, Zuo-Guang Ye⁴, Christian

Wenger⁵, Xiangjian Meng⁶, Wei Ren^{1,*}

1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center

for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049,

China

- 2. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050 China
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- 4. Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- 5. IHP-Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083 China

Table. S1. O₃ -induced changes of area, max intensity and FWHM from TiN, TiON and TiO₂ spectra.

Fig.S1. N 1s spectra detected on the TiN surface with various O_3 treatment: (a) 0 O_3 Pulse, (b) 10 O_3 Pulses, (c) 20 O_3 Pulses and (d) 40 O_3 Pulses.

Fig.S2. O 1s spectra detected on the TiN surface with various O_3 treatment: (a) 0 O_3 Pulse, (b) 10 O_3 Pulses, (c) 20 O_3 Pulses and (d) 40 O_3 Pulses.

Fig.S3. 300 loops of I-V curves of proposed RRAM with different O₃ treatmnets: (a) 0 O₃ Pulse, (b) 10 O₃ Pulses, (c) 20 O₃ Pulses and (d) 40 O₃ Pulses.

Fig.S4. DC endurance characteristics of proposed RRAM devices with the read voltage of -0.2 V: (a) 0 O₃ Pulse, (b) 10 O₃ Pulses, (c) 20 O₃ Pulses and (d) 40 O₃ Pulses.

Fig. S3 shows 300 loops of I-V curves collected in experiment. All samples are subject to the same test parameters: CC = 1mA, sweep voltage of $-2 \sim 0 V/0 V \sim 2 V$ in Set/Reset process. Fig.S4 presents DC endurance characteristics of 0, 10, 20 and 40 O₃ Pulses, that 300 data are extracted from relevant 300 continuous I-V curves shown in Fig. S3. Obviously, it exhibits best stability and moderate ratio in case of 20 Pulses.

Fig.S5. ON/OFF ratio versus different pulses of O₃ treatment.

Fig.S6. Comparison of endurance characteristics between cases of annealed and non-annealed: (a) cumulative probability, (b) $V_{Forming}$, (c) V_{Set} and (d) V_{Reset} .

Fig.S7. DC retention of proposed RRAM, with the read voltage of 0.2 V and the interval of 10s.

Fig.S8. Analog resistance of proposed RRAM devices in DC mode: (a) $0 O_3$ Pulse, (b) $10 O_3$ Pulses, (c) $20 O_3$ Pulses and (d) $40 O_3$ Pulses.