## Supporting information

## Investigation on voltage loss in organic triplet photovoltaic devices based on Ir complexes

Yingzhi Jin, ‡<sup>a</sup> Jie Xue, ‡<sup>b</sup> Juan Qiao, \*<sup>b</sup>, Fengling Zhang, \*<sup>a</sup>

<sup>a</sup> Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-58183, Sweden.

E-mail: <a href="mailto:fengling.zhang@liu.se">fengling.zhang@liu.se</a>

<sup>b</sup> Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

E-mail: gjuan@mail.tsinghua.edu.cn,

Table S1 Photophysical Characteristics of Ir(Ftbpa)<sub>3</sub> and Ir(FOtbpa)<sub>3</sub>.

|                         | Degassed CH <sub>2</sub> Cl <sub>2</sub> solution <sup>a</sup>                            |                     |                                    |                   |                                                          |                         | Neat film                        |                     |                                                                    |  |
|-------------------------|-------------------------------------------------------------------------------------------|---------------------|------------------------------------|-------------------|----------------------------------------------------------|-------------------------|----------------------------------|---------------------|--------------------------------------------------------------------|--|
|                         | $\lambda_{abs}[nm]$<br>[ $\varepsilon (\times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1})$ ] | $\lambda_{em}$ [nm] | $arPsi_{	ext{PL}}^{	extsf{b}}$ [%] | $	au_{ m p}$ [ns] | $\frac{K_{\rm r}/K_{\rm nr}}{[	imes 10^5  { m s}^{-1}]}$ | λ <sub>em</sub><br>[nm] | $arPhi_{	ext{PL}}^{	ext{b}}$ [%] | $\tau_{\rm p}$ [ns] | $\frac{K_{\rm r}}{K_{\rm nr}}$ [×10 <sup>5</sup> s <sup>-1</sup> ] |  |
| Ir(Ftbpa) <sub>3</sub>  | 263 (12.3), 335 (3.5),<br>355 (3.6), 374 (3.3), 490<br>(2.3), 550 (1.8)                   | 765,<br>820(s)      | 14.7                               | 730               | 2.0/11.7                                                 | 784                     | 2.6                              | 19                  | 13.7/512.6                                                         |  |
| Ir(FOtbpa) <sub>3</sub> | 260 (10.8), 326 (3.0),<br>349 (2.9), 349 (2.8), 383<br>(2.1), 472 (1.9), 537<br>(1.1)     | 767,<br>827(s)      | 10.8                               | 489               | 2.2/18.2                                                 | 780                     | 2.4                              | 50                  | 4.9/199.2                                                          |  |

<sup>*a*</sup> The concentration of the solution is  $2 \times 10^{-5}$  M.  $\varepsilon$  denotes the molar extinction coefficients. <sup>*b*</sup>  $\Phi_{PL}$  denotes the PLQY.

Table S2 Summary of photovoltaic parameters of T-OPVs based on Ftbpa and FOtbpa ligands.

| Active layer              | $V_{\rm oc}\left({ m V} ight)$ | $J_{\rm sc}~({\rm mA/cm^2})$ | FF   | PCE (%) |
|---------------------------|--------------------------------|------------------------------|------|---------|
| Ftbpa:PC <sub>71</sub> BM | 0.27                           | 0.02                         | 0.24 | 0.001   |
| FOtbpa:PC71BM             | 0.45                           | 0.04                         | 0.37 | 0.007   |



Fig. S1 CV of and  $Ir(FOtbpa)_3$  recorded versus  $Fc^+/Fc$  in anhydrous DMF solutions at 298 K under a N<sub>2</sub> atmosphere;



**Fig. S2** (a) Absorption spectra of Ftbpa and FOtbpa films; (b) Transient PL decay curves of Ir(FOtbpa)<sub>3</sub> in degassed CH<sub>2</sub>Cl<sub>2</sub> solution; (c) Normalized PL spectra of Ir(Ftbpa)<sub>3</sub>, Ir(FOtbpa)<sub>3</sub>, Ftbpa, and FOtbpa films; The films were excited by a 405 nm laser.



**Fig. S3** J-V curves for hole (a) and electron (b) only devices based on Ir(Ftbpa)<sub>3</sub>:PC<sub>71</sub>BM and Ir(FOtbpa)<sub>3</sub>:PC<sub>71</sub>BM blends with a weight ratio of 1:1.5.



Fig. S4 AFM (2  $\mu$ m × 2  $\mu$ m) phase images of Ir(Ftbpa)<sub>3</sub>:PC<sub>71</sub>BM blends with weight ratio of 2:1 (a), 1:1.5 (b), 1:3 (c) and Ir(FOtbpa)<sub>3</sub>:PC<sub>71</sub>BM blends with weight ratio of 2:1 (d), 1:1.5 (e), 1:3 (f).



Fig. S5 (a) PL spectra of the pristine Ir(Ftbpa)<sub>3</sub> and blended films with different weight ratios.
(b) PL spectra of the pristine Ir(FOtbpa)<sub>3</sub> and blended films with different weight ratios. The PL intensities are corrected by their absorptions at the excitation wavelength (532 nm).



**Fig. S6** (a)  $J_{sc}$  and (b)  $V_{oc}$  versus light intensity for T-OPVs based on Ir(Ftbpa)<sub>3</sub>:PC<sub>71</sub>BM blends (1:1.5) and Ir(FOtbpa)<sub>3</sub>:PC<sub>71</sub>BM blends (1:1.5).