Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

The mechanical, electronic and optical properties of two-dimensional transition metal chalcogenides MX₂ and M₂X₃ (M= Ni, Pd; X= S, Se, Te) with hexagonal and orthorhombic structures

Wenqi Xiong,^a Kaixiang Huang,^a and Shengjun Yuan^{*a,b}

 ^a Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
^b Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China.

AUTHOR INFORMATION

Corresponding Author:

E-mail: <u>s.yuan@whu.edu.cn</u>

FIG. S1. The total energies of O-Ni X_2 and O-Ni $_2X_3$ as a function of the time under the molecular dynamics simulations at 300K.

FIG. S2. The total energies of O-Pd X_2 and O-Pd $_2X_3$ as a function of the time under the molecular dynamics simulations at 300K.

FIG. S3. The phonon dispersions of monolayer O-Ni X_2 and O-Ni $_2X_3$.

FIG. S4. The phonon dispersions of monolayer $O-PdX_2$ and $O-Pd_2X_3$.

FIG. S5. The diagrams of first Brillouin zone for (a) hexagonal and (b) orthorhombic phases, respectively.

FIG. S6. The PBE and PBE+SOC band structures of monolayer TMCs.

FIG. S7. The HSE06+SOC band structures of monolayer TMCs.

FIG. S8. The HSE06 band structures of bilayer $H-MX_2$, indicating their metallic characters.

	C_{11}	C_{22}	C_{12}	C_{66}	Y_x	Y_y	v_x	v _y
	(N/m)	(N/m)	(N/m)	(N/m)	(N/m)	(N/m)	0.27(0.277
$H-N1S_2$	81.166	81.259	22.462	29.293	/4.95/	/5.043	0.276	0.277
H-NiSe ₂	55.072	55.447	16.348	19.01	50.252	50.595	0.295	0.297
H-NiTe ₂	35.27	35.793	7.031	14.543	33.889	34.392	0.196	0.199
H-PdS ₂	67.127	67.072	18.771	24.188	61.874	61.823	0.28	0.28
H-PdSe ₂	54.969	54.952	15.873	19.511	50.384	50.368	0.289	0.289
H-PdTe ₂	41.059	41.281	12.829	13.788	37.072	37.272	0.311	0.312
O-NiS ₂	59.253	93.034	5.778	32.385	58.894	92.47	0.062	0.098
O-NiSe ₂	37.442	72.81	-1.335	26.51	37.417	72.762	-0.018	-0.036
O-NiTe ₂	22.679	60.781	-2.259	23.821	22.595	60.556	-0.037	-0.1
O-PdS ₂	56.622	78.41	2.993	23.709	56.508	78.251	0.038	0.053
O-PdSe ₂	37.729	61.576	1.509	19.602	37.692	61.516	0.025	0.04
O-PdTe ₂	23.214	51.031	-0.049	17.885	23.214	51.031	-0.001	-0.002
O-Ni ₂ S ₃	63.029	54.077	33.148	28.372	42.709	36.643	0.613	0.526
O-Ni ₂ Se ₃	45.364	40.261	29.865	24.51	23.211	20.6	0.742	0.658
O-Ni ₂ Te ₃	35.324	31.641	28.531	21.108	9.597	8.596	0.902	0.808
O-Pd ₂ S ₃	58.448	51.785	27.806	23.446	43.517	38.556	0.537	0.476
O-Pd ₂ Se ₃	41.081	38.156	22.495	21.519	27.819	25.838	0.59	0.548
O-Pd ₂ Te ₃	28.077	28.188	18.393	20.923	16.075	16.139	0.653	0.655

TABLE S1. Calculated elastic stiffness (C_{ij}) , Young's modulus (Y), Poisson's ratio (v) of monolayer TMCs along the *x* and *y* directions.

				pH=0		pH=7	
	W	E_CBM	E_VBM	$\Delta E_{\rm C}$	$\Delta E_{\rm V}$	$\Delta E_{\rm C}$	$\Delta E_{\rm V}$
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
H-NiS ₂	6.03	-5.17	-6.27	-	0.60	-	1.01
H-NiSe ₂	5.24	-4.95	-5.54	-	-	-	0.28
H-NiTe ₂	4.44	-	-	-	-	-	-
H-PdS ₂	6.55	-5.04	-6.84	-	1.17	-	1.58
H-PdSe ₂	5.71	-4.81	-5.94	-	0.27	-	0.68
H-PdTe ₂	4.66	-4.42	-4.94	0.02	-	-	-
O-NiS ₂	6.06	-3.88	-6.28	0.56	0.61	0.15	1.02
O-NiSe ₂	5.89	-3.89	-6.16	0.55	0.49	0.14	0.9
O-NiTe ₂	5.47	-3.90	-5.79	0.54	0.12	0.13	0.53
O-PdS ₂	5.99	-4.10	-6.24	0.34	0.57	-	0.98
O-PdSe ₂	5.85	-3.91	-6.07	0.53	0.40	0.12	0.81
O-PdTe ₂	5.48	-3.82	-5.72	0.62	0.05	0.21	0.46
O-Ni ₂ S ₃	6.02	-4.52	-6.30	-	0.63	-	1.04
O-Ni ₂ Se ₃	5.74	-4.42	-6.03	0.02	0.36	-	0.77
O-Ni ₂ Te ₃	5.03	-4.34	-5.39	0.10	-	-	0.13
O-Ni ₂ S ₃	5.64	-4.36	-5.86	0.08	0.19	-	0.60
O-Ni ₂ Se ₃	5.38	-4.23	-5.62	0.21	-	-	0.36
O-Ni ₂ Te ₃	5.11	-4.19	-5.42	0.25	-	-	0.16

TABLE S2. The work function (*W*), conduction band edge (E_CBM), valence band edge (E_VBM), potential difference ΔE_C (ΔE_V) between CBM (VBM) and reduction potential (oxidation potential) for monolayer TMCs.