Supporting Information

Luminescence color tuning and energy transfer properties in (Sr,Ba)₂LaGaO₅:Bi³⁺,Eu³⁺ solid solution phosphors: realization of single-phased white emission for WLEDs

Dongjie Liu,^{a,b} Peipei Dang,^{a,b} Xiaohan Yun,^c Guogang Li,^{*,c} Hongzhou Lian,^a and Jun Lin^{*,a,b,d}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: jlin@ciac.ac.cn ^bUniversity of Science and Technology of China, Hefei, 230026, P. R. China ^cEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China. E-mail: ggli@cug.edu.cn ^dSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P. R. China.

Fig. S1 Data (black dots) and fitted (red line) powder XRD patterns as well as the difference profile (blue line) for Rietveld analysis of (a) $Sr_{1.5}Ba_{0.5}LaGaO_5:0.02Bi^{3+}$, (b) $Sr_{1.0}Ba_{1.0}LaGaO_5:0.02Bi^{3+}$ (c) $Sr_{0.5}Ba_{0.5}LaGaO_5:0.02Bi^{3+}$ and (d) $Ba_2LaGaO_5:0.02Bi^{3+}$ samples. The short vertical lines show the positions of Bragg reflections of the fitted patterns.

Samples	Atom	Site	Х	Y	Z	Frac.	Uiso
	La	8h	0.181000	0.680950	0	0.5000	0.95
	Sr1	8h	0.179903	0.679853	0	0.4423	0.28
<i>y</i> = 0	Sr2	4 <i>a</i>	0	0	1/4	0.9886	0.96
	Ga	4 <i>b</i>	0	1/2	1/4	1.0085	-0.04
	01	4 <i>c</i>	0	0	0	0.7891	0.38
	02	16/	0.143713	0.643743	0.652630	0.6550	1.29
	La	8h	0.181000	0.680950	0	0.9137	2.61
	Sr1	8h	0.161753	0.661703	0	0.0556	-9.00
<i>y</i> = 0.5	Sr2	4 <i>a</i>	0	0	1/4	1.3210	1.31
	Ga	4 <i>b</i>	0	1/2	1/4	1.1656	0.01
	01	4 <i>c</i>	0	0	0	0.6679	-0.17
	02	16/	0.141937	0.641967	0.651225	0.8466	-2.66
	La	8h	0.182216	0.682166	0	0.5000	3.97
	Sr1	8h	0.179329	0.679279	0	-1.5874	1.70
<i>y</i> = 1.0	Sr2	4 <i>a</i>	0	0	1/4	-0.8854	-0.27
	Ga	4 <i>b</i>	0	1/2	1/4	-0.6582	0.61
	01	4 <i>c</i>	0	0	0	-0.5006	-1.06
	02	16/	0.130770	0.630800	0.632946	-0.6150	-0.43
	La	8h	0.179141	0.679091	0	-1.7957	1.70
	Sr1	8h	0.170738	0.670688	0	-0.7466	1.70
y = 1.5	Sr2	4 <i>a</i>	0	0	1/4	-3.5629	1.27
	Ga	4 <i>b</i>	0	1/2	1/4	-2.6559	2.80
	01	4 <i>c</i>	0	0	0	-3.6257	10.19
	02	16/	0.158934	0.658964	0.645074	-1.9722	0.81

Table S1. Final refined structure parameters of $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0-2.0) samples derived from the GSAS refinement of XRD data.

	La	8h	0.182817	.682817	0	0.4919	1.41
	Sr1	8h	0.187240	0.687240	0	0.5891	1.93
	Sr2	4 <i>a</i>	0	0	1/4	1.0294	-0.15
<i>y</i> = 2.0	Ga	4 <i>b</i>	0	1/2	1/4	0.9710	6.16
	01	4 <i>c</i>	0	0	0	2.1976	80.00
	02	16/	0.135301	0.635301	0.645999	1.1343	8.22

Samples	Bond distance (Å)					
	La-01	2.54182(3)	Sr1-01	2.54470(3)	Sr2-01	2.81962(6)
	La-O1	2.54135(3)	Sr1-01	2.54423(3)	Sr2-01	2.81962(6)
	La-O2	2.84476(3)	Sr1-02	2.83807(3)	Sr2-02	2.87958(3)
	La-O2	2.43195(3)	Sr1-02	2.43955(3)	Sr2-02	2.87958(3)
	La-O2	2.84470(3)	Sr1-02	2.83801(3)	Sr2-02	2.87958(3)
<i>y</i> = 0	La-O2	2.84470(3)	Sr1-02	2.83801(3)	Sr2-02	2.87958(3)
	La-O2	2.84476(3)	Sr1-02	2.83807(3)	Sr2-02	2.87958(3)
	La-O2	2.43195(3)	Sr1-02	2.43955(3)	Sr2-02	2.87958(3)
					Sr2-02	2.87958(3)
					Sr2-02	2.87958(3)
	Average	2.66575	Average	2.66502	Average	2.86760
	La-O1	2.53957(3)	Sr1-01	2.59608(3)	Sr2-01	2.84108(9)
	La-O1	2.53910(3)	Sr1-01	2.59562(3)	Sr2-01	2.84108(9)
	La-O2	2.83285(4)	Sr1-02	2.71897(4)	Sr2-02	2.89309(3)
	La-O2	2.44116(4)	Sr1-02	2.57841(4)	Sr2-02	2.89309(3)
	La-O2	2.83280(4)	Sr1-02	2.71889(4)	Sr2-02	2.89309(3)
<i>y</i> = 0.5	La-O2	2.83280(4)	Sr1-02	2.71889(4)	Sr2-02	2.89309(3)
	La-O2	2.83285(4)	Sr1-02	2.71897(4)	Sr2-02	2.89309(3)
	La-O2	2.44116(4)	Sr1-02	2.57841(4)	Sr2-02	2.89309(3)
					Sr2-02	2.89309(3)
					Sr2-02	2.89309(3)
	Average	2.66154	Average	2.65303	Average	2.88269

Table S2. Main bond distance of $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0-2.0) samples.

	La-O1	2.55274(4)	Sr1-01	2.56033(4)	Sr2-01	2.85719(7)
	La-O1	2.55227(4)	Sr1-01	2.55986(4)	Sr2-01	2.85719(7)
	La-O2	2.68192(3)	Sr1-02	2.66296(3)	Sr2-02	3.03937(4)
	La-O2	2.38851(3)	Sr1-02	2.41053(3)	Sr2-02	3.03937(4)
	La-O2	2.68188(3)	Sr1-02	2.66292(3)	Sr2-02	3.03937(4)
<i>y</i> = 1.0	La-O2	2.68188(3)	Sr1-02	2.66292(3)	Sr2-02	3.03937(4)
	La-O2	2.68192(3)	Sr1-02	2.66296(3)	Sr2-02	3.03937(4)
	La-O2	2.38851(3)	Sr1-02	2.41053(3)	Sr2-02	3.03937(4)
					Sr2-02	3.03937(4)
					Sr2-02	3.03937(4)
	Average	2.57620	Average	2.57413	Average	3.00293
	La-O1	2.59185(7)	Sr1-01	2.61595(7)	Sr2-01	2.87014(13)
	La-O1	2.59137(7)	Sr1-01	2.61548(7)	Sr2-01	2.87014(13)
	La-O2	2.91177(7)	Sr1-02	2.86112(7)	Sr2-02	2.91404(7)
	La-O2	2.31998(6)	Sr1-02	2.37908(6)	Sr2-02	2.91404(7)
	La-O2	2.91168(7)	Sr1-02	2.86103(7)	Sr2-02	2.91404(7)
<i>y</i> = 1.5	La-O2	2.91168(7)	Sr1-02	2.86103(7)	Sr2-02	2.91404(7)
	La-O2	2.91177(7)	Sr1-02	2.86112(7)	Sr2-02	2.91404(7)
	La-O2	2.31998(6)	Sr1-02	2.37908(6)	Sr2-02	2.91404(7)
					Sr2-02	2.91404(7)
					Sr2-02	2.91404(7)
	Average	2.68376	Average	2.67924	Average	2.90526

	Average	2.69878	Average	2.70236	Average	2.99510
					Sr2-02	3.02447(24)
					Sr2-02	3.02447(24)
	La-O2	2.48943(19)	Sr1-02	2.45666(19)	Sr2-02	3.02447(24)
	La-02	2.84582(21)	Sr1-02	2.87499(21)	Sr2-02	3.02447(24)
<i>y</i> = 2.0	La-02	2.84582(21)	Sr1-02	2.87499(21)	Sr2-02	3.02447(24)
	La-O2	2.84582(21)	Sr1-02	2.87499(21)	Sr2-02	3.02447(24)
	La-O2	2.48943(19)	Sr1-02	2.45666(19)	Sr2-02	3.02447(24)
	La-O2	2.84582(21)	Sr1-02	2.87499(21)	Sr2-02	3.02447(24)
	La-O1	2.61403(24)	Sr1-01	2.60279(24)	Sr2-01	2.87760(4)
	La-01	2.61403(24)	Sr1-01	2.60279(24)	Sr2-01	2.87760(4)

Fig. S2 Diffuse reflectance spectra of the Sr_2LaGaO_5 and Ba_2LaGaO_5 hosts. The inset depicts the band gap energy of the Sr_2LaGaO_5 and Ba_2LaGaO_5 hosts.

Fig. S3 (a) The XPS spectra and (b) enlarged peaks of Bi^{3+} in $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0 (red line), y = 1.0 (blue line), y = 2.0 (green line)). The inset in (b) shows the integrated intensity of Bi^{3+} peaks in $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0, 1.0, 2.0) samples with various Ba^{2+} content.

у	IQY
0	47.3%
0.5	31.4%
1.0	24.9%
1.5	16.7%
2.0	14.7%

Table S3. The IQYs of $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0-2.0) samples.

Fig. S4 (a) Average bond length of La-O, Sr1-O and Sr2-O in $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0-2.0). (b) Distortion of La, Sr1 and Sr2 sites in $Sr_{2-y}Ba_yLaGaO_5:0.02Bi^{3+}$ (y = 0-2.0)

Fig. S5 XRD patterns of $Sr_{2-y}Ba_yLaGaO_5:xBi^{3+}$, zEu^{3+} (x = 0, 0.02; y = 0, 1.0, 2.0; z = 0, 0.20) samples.

Fig. S6 Dependence of I_{S0}/I_S of Bi³⁺ on (a) *C*, (b) $C^{6/3}$, (c) $C^{8/3}$, and (d) $C^{10/3}$ in Sr₂LaGaO₅:0.02Bi³⁺, *z*Eu³⁺ (*z* = 0-0.20) system.

Fig. S7 Dependence of I_{S0}/I_S of Bi³⁺ on (a) *C*, (b) $C^{6/3}$, (c) $C^{8/3}$, and (d) $C^{10/3}$ in SrBaLaGaO₅:0.02Bi³⁺, *z*Eu³⁺ (*z* = 0-0.20) system.

Fig. S8 Dependence of I_{s0}/I_s of Bi³⁺ on (a) *C*, (b) $C^{6/3}$, (c) $C^{8/3}$, and (d) $C^{10/3}$ in Ba₂LaGaO₅:0.02Bi³⁺, *z*Eu³⁺ (*z* = 0-0.20) system.

Fig. S9 The CIE chromaticity coordinates diagram of $Sr_2LaGaO_5:0.02Bi^{3+}$ phosphor at different temperatures.