Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019 ## **Supporting Information** ## High-performance CdScInO thin-film transistors and their stability improvement under negative bias (illumination) temperature stress Teng Long,‡^a Xingqiang Dai,‡^a Linfeng Lan,*^a, Caihao Deng,^a Zhuo Chen,^a Changchun He,^b Lu Liu,^b Xiaobao Yang,^b and Junbiao Peng^a ^aState Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China. E-mail: lanlinfeng@scut.edu.cn ^bSchool of Physics Science and Technology, South China University of Technology, Guangzhou, China ‡Contributed equally to this work. **Figure S1.** NBI/TS stability of the ScInO TFTs. (a) NBTS at 80 °C; (b) NBIS under 650 nm red light illumination; (c) NBIS under 550 nm green light illumination; (d) NBIS under 450 nm blue light illumination. Figure S2. (a) PBTS and (b) NBTS stability at 80 $^{\circ}\text{C}$ Figure S3. The calculated ε_2 for $Sc_3In_{29}O_{48}$, $Cd_2Sc_3In_{27}O_{48}$, and $Cd_2Sc_3In_{27}O_{47}$ with 1 V_O .