Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

## **Supporting Information**

## High-performance CdScInO thin-film transistors and their stability improvement under negative bias (illumination) temperature stress

Teng Long,‡<sup>a</sup> Xingqiang Dai,‡<sup>a</sup> Linfeng Lan,\*<sup>a</sup>, Caihao Deng,<sup>a</sup> Zhuo Chen,<sup>a</sup> Changchun He,<sup>b</sup> Lu Liu,<sup>b</sup> Xiaobao Yang,<sup>b</sup> and Junbiao Peng<sup>a</sup>

<sup>a</sup>State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China. E-mail: lanlinfeng@scut.edu.cn

<sup>b</sup>School of Physics Science and Technology, South China University of Technology, Guangzhou, China

‡Contributed equally to this work.



**Figure S1.** NBI/TS stability of the ScInO TFTs. (a) NBTS at 80 °C; (b) NBIS under 650 nm red light illumination; (c) NBIS under 550 nm green light illumination; (d) NBIS under 450 nm blue light illumination.



Figure S2. (a) PBTS and (b) NBTS stability at 80  $^{\circ}\text{C}$ 



Figure S3. The calculated  $\varepsilon_2$  for  $Sc_3In_{29}O_{48}$ ,  $Cd_2Sc_3In_{27}O_{48}$ , and  $Cd_2Sc_3In_{27}O_{47}$  with 1  $V_O$ .