Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Impurity States in $Mo_{1-x}M_xSe_2$ Compounds Doped with Group VB Elements and their Electronic and Thermal Transport Properties

Cheng Zhang, ‡^a Zhi Li, ‡^a Min Zhang, ^a Hongyao Xie, ^a Changhua Hong, ^a Xianli Su, ^a Gangjian Tan, ^a Pierre Ferdinand Poudeu Poudeu, ^b Ctirad Uher, ^c Wei Liu*^a and Xinfeng Tang*^a

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. E-mail: w.liu@whut.edu.cn; tangxf@whut.edu.cn

^b Materials Science and Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, United States.

^c Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States.

‡ C. Zhang and Z. Li contributed equally to this work.

		a, b (Å)	c (Å)	Relative variation ratio		
	Compounds			a, b (%)	c (%)	
Calculations	Mo ₁₆ Se ₃₂	3.29088	12.97660	/	/	
	Mo ₁₅ VSe ₃₂	3.29600	12.90482	0.16	-0.55	
	Mo ₁₅ NbSe ₃₂	3.30419	12.90731	0.40	-0.53	
	Mo ₁₅ TaSe ₃₂	3.30436	12.91242	0.41	-0.49	

Table S1. Optimized lattice parameters of $Mo_{16}Se_{32}$ and $Mo_{15}MSe_{32}$ (M = V, Nb and Ta) based on the DFT.

Table S2. Room temperature physical parameters of $Mo_{1-x}V_xSe_2$ ($0 \le x \le 0.09$).

Sample	р	μ	σ	S	PF	*/	ĸ
	$(10^{20} \text{ cm}^{-3})$	(cm ² V ⁻¹ s ⁻¹)	(10 ⁴ Sm ⁻¹)	(µVK ⁻¹)	(mWm ⁻¹ K ⁻²)	<i>m /m</i> ₀	(Wm ⁻¹ K ⁻¹)
<i>x</i> = 0.01	0.25	5.1	0.20	316	0.20	1.34	11.6
<i>x</i> = 0.03	2.3	3.4	1.24	101	0.13	1.88	10.0
<i>x</i> = 0.05	4.8	3.6	2.80	71	0.14	2.17	9.3
<i>x</i> = 0.07	5.6	3.0	2.71	67	0.12	2.24	8.9
<i>x</i> = 0.09	7.2	3.1	3.60	57	0.12	2.28	8.8

Table S3. Room temperature physical parameters of $Mo_{1-x}Nb_xSe_2$ (0 < $x \le 0.09$).

Sample	р	μ	σ	S	PF	*1	ĸ
	(10 ²⁰ cm ⁻³)	(cm ² V ⁻¹ s ⁻¹)	(10 ⁴ Sm ⁻¹)	(µVK ⁻¹)	(mWm ⁻¹ K ⁻²)	<i>m /m</i> ₀	(Wm ⁻¹ K ⁻¹)
x = 0.01	0.56	4.3	0.38	202	0.16	1.47	10.0
x = 0.03	3.6	3.9	2.24	91.5	0.19	2.29	9.6
<i>x</i> = 0.05	6.5	4.2	4.37	70.8	0.22	2.48	10.0
<i>x</i> = 0.07	9.1	4.0	5.80	56.9	0.19	2.65	8.4
<i>x</i> = 0.09	12.0	3.7	7.05	48.6	0.17	2.73	7.5

Fig. S1 The first Brillouin zone of MoQ_2 with high symmetry paths indicated.

Fig. S2 Band structure of (a) $Mo_{16}Se_{32}$, (b) $Mo_{15}VSe_{32}$, (c) $Mo_{15}NbSe_{32}$, and (d) $Mo_{15}TaSe_{32}$ without SOC.

Fig. S3 Powder XRD pattern of $Mo_{1-x}M_xSe_2$ ($0 < x \le 0.09$) compounds, where (a) M = V, (b) M = Nb, and (c) M = Ta.

Fig. S4 Optical absorption spectra of $Mo_{1-x}M_xSe_2$ (0 < x ≤ 0.09) compounds, where (a) M = V, (b) M = Nb, and (c) M = Ta. The optical absorption edge of the compounds shifts towards low energy with the increasing V/Nb/Ta content, and indicates a decreased band gap.

Fig. S5 (a) Temperature-dependent hole concentration and (b) the carrier mobility of Mo₁₋ $_xV_xSe_2$ (0 < x ≤ 0.09) compounds along $\perp P$ direction and within 10 – 300 K. (c) Temperature dependent electrical conductivity σ of Mo_{1-x}V_xSe₂ (0 < x ≤ 0.09) along $\perp P$ direction in coordinates of ln σ = $f(T^{-1/4})$, and (d) in ln σ =f(1000/T) in the range of 2 – 823 K.

Fig. S6 (a)Temperature-dependent hole concentration and (b) the carrier mobility of Mo₁₋ _xNb_xSe₂ (0 < x ≤ 0.09) compounds along \perp P direction and within 10 – 300 K. (c) Temperature dependent electrical conductivity σ of Mo_{1-x}Nb_xSe₂ (0 < x ≤ 0.09) along \perp P direction in coordinates of ln σ = $f(T^{-1/4})$, and (d) in ln σ =f(1000/T) in the range of 2 – 823 K.

Fig. S7 Temperature dependence of (a) electrical resistivity, (b) the Seebeck coefficient, and (c) the thermal conductivity of the MoSe₂ compound measured along $\perp P$ and $\parallel P$ directions. MoSe₂ has a layered structure with weak vdW bonds between the layers, resulting in distinctly different thermal transport properties of the bulk along the $\perp P$ direction and along the $\parallel P$ direction.

Fig. S8 Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) thermal conductivity, (e) lattice thermal conductivity, (f) dimensionless figure of merit *ZT* of Mo_{1-x}V_xSe₂ (0 < $x \le 0.09$) compounds measured along \perp P direction.

Fig. S9 Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) thermal conductivity, (e) lattice thermal conductivity, (f) dimensionless figure of merit *ZT* of Mo_{1-x}Nb_xSe₂ ($0 < x \le 0.09$) compounds measured along \perp P direction.