Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Graphene/SiC Heterojunction Nanoarrays: Toward Field Emission Applications with Low Turn-on fields and High Stabilities

Lin Wang, Lan Jiang, Tian Zhang, Fengmei Gao, Shanliang Chen* and Weiyou Yang*

Institute of Materials, Ningbo University of Technology, Ningbo City, 315016, P.R. China.

Corresponding Authors:

E-mails: csl211.kd@163.com (S. Chen) and weiyouyang@tsinghua.org.cn (W. Yang)

Tel: +86-574-87080966, Fax: +86-574-87081221

Table 1 Turn-on fields^{*a*}, highest current density and the corresponding applied external fields, field enhancement factors (β), and current emission stability (current density, testing time and current fluctuation) for SiC nanostructured field emitters, other typical nanostructured emitters, as well as other commonly used emitters.

Highest gurrent	
density (mA/am ²) Current	stability
SiC field emitters $E_{to} (V/\mu m)$ density (<i>mA/cm⁻</i>) β (current densit	y, time, Ref.
fields (V/um) fluctuations)	
$\frac{110105 (\sqrt{7} \mu III)}{P doned C/SiC} = 1.10 + 12 = 9.2 = 639.4 = 662.5 \mu A/am}$	² 5 h This
D-uopeu G/SIC 1.10-1.12 0.2 0.504 002.5 μ A/CII hotoroiunation 1.95 3.70/	-, 5 II, 1 IIIS work
	WULK
$\begin{array}{c} \text{Halloal Lays} \\ \text{Patterned SiC} & 1.54 \\ \text{c} 0.22 \\ \text{d} 248 \\ \end{array}$	1
$\begin{array}{c} 1 \text{ attended SIC} \\ 1.54 \\ 2.72 \\ 2.72 \\ 3.$	1
SiC quasi-aligned $1.4-3.4$ and 5 $$ $\sim 200 \mu$ A/cm ²	10 h 2
nanoneedle arrays ~ 1.2	10 11, 2
Au-decorated SiC 1.14 ~ 3.8 6244	3
nanowires ~ 21	5
P-doped SiC 1.03 ~ 4.6 5508 2.65 mA/cm ²	20 h 4
nanoparticles ~ 1.8 $+ 21.3.4$, 20 II, 7
Carbon decorated 0.5 ~ 14 $\sim 2.0 \text{ m} \Delta/\text{cm}^2$	70 7h < 5
SiC nanowires ~ 2.3 ~ 2.0 mi Vem ,	2 II, < 5
N-doned SiC 1 11 ~ 3.4 1 138 mA/	m^2 6
nanoneedles ~ 1.68 1 h 8 10	/ 0
$B-doned SiC$ 1.92 ~1.4 3643 512.9 μ A/cm	2 8 h 7
nanoneedle arrays ~ 3.98 $6.5-7.8^{\circ}$, 0 11, 7
$n_{\rm type} \beta_{\rm siC} = 1.57-1.95 \sim 2.3 = 3217 $	8
$\frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000$	0
Well-aligned SiC 1 50 ~ 2.45 4482 693 3 μ A/cm ²	4 h < 9
nanowires arrays ~ 2.9 $+402$ $0.05.5$ μ Ven ,	+ II, <)
SiC B-doped $3C$ -SiC 1 35 ~ 1.4 4895 10 h 11	14% 10
nanostructured nanowires ~2.57	11/0 10
emitters N-doped SiC 1.37 ~ 3.5 2486 1 h 7.7%	14.1% 11
nanoneedles ~1.06	
N-doped nanoporous $4.4-9.6$ 6 A/cm^2 $936-$	12
SiC ~ 7.5 3636	
N-doped SiC 19-265 ~ 21 1710	13
nanoarrays ~2.62	
N-doped 3C-SiC ~ 1.1 ~ 5.0 6500 1.7 mA/cm^2 .	0.5 h 14
nanoneedles ~2.2	
Tapered SiC 1.2 ~0.6 3368	. 15
nanowires ~1.99	
Al ₂ O ₃ -decorated 2.4 ~ 10.0 ,,	16
tubular SiC ~5.0	
Aligned SiC porous $2.3-2.9$ ~2.3 5241 $570 \mu\text{A/cm}^2$,	20 h, 17
nanowires ~7.96	,
β -SiC nanowires 2000,,	18
β-SiC 12 ~0.035,,	19
nanoarchitectures	
SiC 3.33,	20
nanowires/nanorods	
Nonaligned SiC 3.1-3.5 ~0.09 $60 \mu\text{A/cm}^2$,	2 h, 21
nanowires ~ 6.05 $\pm 15\%$	
Vertical carbon $0.4-1.1$ ~1.2 9000- ~500 μ A/cm ² .	158 h, - 22
nanotubes ~0.7 14500 -	

	Carbon nanotubes		~10		500 μA/cm ² , 20 h,	23
	Carbon nanotubes	3.6		1112- 1546	,,	24
	Multiwall carbon	2.05	~0.06	1023,	, 10 h,	25
	nanotubes	$(1 \mu\text{A/cm}^2)$	~2.3	16434		
	Aligned untralong	1.3	~1.2	14000	,,	26
	ZnO nanobelts		~3.0			
	Ultrathin ZnO		~40	700	$7.4 \ mA/cm^2$, 16 h,	27
	nanobelts		~11		~14%	
	Vertical ZnO	2.0-2.8	~0.9	3834-	,,	28
	nanowires/graphene		~2.9	6473		
	Single-layer	2.3	~22	3700	11.46 <i>m</i> A/cm ² , 12 h,	29
Other typical	graphene films		~6.1		~4%	
inorganic	Graphene	2.04	~1.2		~700 µA/cm ² , 12 h,	30
nanostructured	nanosheets		~3.3			
emitters	Si-doped AlN	1.8	~22	3271	$10 \ m\text{A/cm}^2$, 5 h, <	31
	nanoneedle array		~5.4		5%	
	Aligned AlN	3.8	~7	950	,,	32
	nanorods		~8.4			
	AlN nanorod arrays	4.7	~24	1175.5	, 4 h, 0.74%	33
			~22	-		
				1888.7		
	Ultrafine ZnS	3.47	~12	2000	,,	34
	nanobelts		~5.5			
	ZnS nanobelts	3.8	~0.035	1839	,,	35
	arrays		~4.3			
	Single-crystalline	0.95-2.8	~13	823-	$250 \mu\text{A/cm}^2$, ~17 h,	36
	PrB_6 nanorods		~7.25	1390	<10%	
	Single-crystalline	1.06-1.82	~6.0	1072	$\sim 500 \mu \text{A/cm}^2$, $\sim 17 \text{h}$,	37
	LaB_6 nanowires		~2.85		<6.0%	
	CeB_6 nanorods	1.8	~0.013	1035-	$12.8 \mu \text{A/cm}^2$, 3 h,	38
			~12	3863	1.41-1.51%	
	SmB ₆ nanowires	2.7-4.2	~10	2207-	, 500 min, 10%	39
			~9.7	4741		
	SnO ₂ nanowires	3.5	~6.5	1225	$\sim 1 m \text{Acm}^{-2}$, 40 h,	40
	-		~7.5			
	Single-crystalline	3.7	~3.7	1298	$\sim 200 \mu \text{A/cm}^2$, 75 h,	41
	CdS nanobelts		~11		5%	
	Tungsten oxide		~12	1657	5.25 mA/cm^2 , 1 h,	42
	nanowires		~4.65		~5%	
	Oriented CuO	0.9	~1.6	2400-	1.15 mA/cm^2 . ~1 h	43
	nanoknife arravs		~1.25	5400	~5%	-
					- / 0	

^{*a*} The turn-on field is defined to the electric field required to generate an emission current density of $10 \,\mu$ A/cm². If other values are used, it will be mentioned separately.

Calculation on Electronic Band Structures

The electronic band structures of the pure and B-doped SiC nanowires are calculated based on the VASP code⁴⁴ and density functional theory (DFT) with the exchange-correlation functional of Perdew, Burke, and Ernzerhof revised for solids (PBEsol).⁴⁵ The numbers of the valence electrons for C, Si and B atoms included in the calculations are 4, 4 and 5 respectively. The valence wave functions are expanded in a plane wave basis with a cutoff energy of 330 eV. A $4 \times 4 \times 8$ grid is applied for the K-point mesh sampling the Brillouin zone. Further increasing the energy cutoff and K-points exhibit little difference in the results. All the structures considered in this study have been fully relaxed with a conjugate-gradient algorithm until the energy on the atoms is less than 1.0×10^{-4} eV. Meanwhile, the periodic boundary conditions have been applied in all three dimensions. As an example, in current calculation, the concentration of B dopant is roughly set as 2.6 at.%, which is about half to that of the experimental setup for qualitatively reflecting the electronic structures of pure and B-doped 3C-SiC samples. Several supercells of B-doped 3C-SiC with B occupying unequivalent Si sites have been examined. The calculations disclose that, as compared to that of the pure counterpart, the B dopants doped into the SiC nanowires via the formation of substitutional solid solutions might favor a more localized state near the Fermi energy level. This could facilitate a more facile electron excitation from the valence band to the vacuum level, consequently leading to the remarkable enhancement on the FE properties of G/SiC heterojunction nanowire arrays.

Reference

- 1 W. Yang, W. Wang and C. Xie, J. Am. Ceram. Soc., 2019, 102, 3854-3859.
- 2 W. Yang, C. Xie and W. Wang, Ceram. Int., 2019, 45, 22420-22425.
- 3 Q. Chen, S. Chen, F. Gao, L. Wang, Z. Xie and W. Yang, J. Mater. Chem. C, 2016, 4, 1363-1368.
- 4 S. Chen, M. Shang, F. Gao, L. Wang, P. Ying, W. Yang and X. Fang, Adv. Sci., 2016, 3, 1500256.
- 5 M. Zhang, Z. Li, J. Zhao, L. Gong, A. Meng, X. Liu, X. Fan and X. Qi, J. Mater. Chem. C, 2015, 3, 658-663.
- 6 S. Chen, P. Ying, L. Wang, G. Wei, F. Gao, J. Zheng, M. Shang, Z. Yang, W. Yang and T. Wu, *NPG Asia Mater.*, 2015, 7, e157.
- 7 L. Wang, G. Wei, F. Gao, C. Li and W. Yang, *Nanoscale*, 2015, 7, 7585-7592.
- 8 L. Wang, F. Gao, S. Chen, C. Li and W. Yang, Appl. Phys. Lett., 2015, 107, 122108.
- 9 L. Wang, C. Li, Y. Yang, S. Chen, F. Gao, G. Wei and W. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 526-533.
- 10 Y. Yang, H. Yang, G. Wei, L. Wang, M. Shang, Z. Yang, B. Tang and W. Yang, J. Mater. Chem. C, 2014, 2, 4515-4520.
- 11 S. Chen, P. Ying, L. Wang, G. Wei and W. Yang, Appl. Phys. Lett., 2014, 105, 133106.
- 12 M. G. Kang, H. J. Lezec and F. Sharifi, Nanotechnology, 2013, 24, 065201.
- 13 S. Chen, P. Ying, L. Wang, G. Wei, J. Zheng, F. Gao, S. Su and W. Yang, *J. Mater. Chem. C*, 2013, 1, 4779-4784.
- 14 X. Zhang, Y. Chen, W. Liu, W. Xue, J. Li and Z. Xie, J. Mater. Chem. C, 2013, 1, 6479-6486.
- 15 R. Wu, K. Zhou, J. Wei, Y. Huang, F. Su, J. Chen and L. Wang, J. Phys. Chem. C, 2012, 116, 12940-12945.
- H. Cui, L. Gong, G. Yang, Y. Sun, J. Chen and C. Wang, *Phys. Chem. Chem. Phys.*, 2011, 13, 985-990.
- Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He and Y. Hu, J. Phys. Chem. C, 2008, 112, 20126-20130.
- 18 D. W. Kim, Y. J. Choi, K. J. Choi, J. G. Park, J. H. Park, S. M. Pimenov, V. D. Frolov, N. P. Abanshin, B. I. Gorfinkel and N. M. Rossukanyi, *Nanotechnology*, 2008, **19**, 225706.

- 19 G. Shen, Y. Bando and D. Golberg, Cryst. Growth Des., 2007, 7, 35-38.
- 20 S. Deng, Z. Li, W. Wang, N. Xu, J. Zhou, X. Zheng, H. Xu, J. Chen and J. She, *Appl. Phys. Lett.*, 2006, **89**, 023118.
- 21 W. Zhou, Y. Wu, E. Kong, F. Zhu, Z. Hou and Y. Zhang, Appl. Surf. Sci., 2006, 253, 2056-2058.
- 22 D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff and S. O. Kim, *Adv. Mater.*, 2010, **22**, 1247-1252.
- 23 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, *Science*, 1999, 283, 512-514.
- 24 B. J. Yoon, E. H. Hong, S. E. Jee, D. M. Yoon, D. S. Shim, G. Y. Son, Y. J. Lee, K. H. Lee, H. S. Kim and C. G. Park, J. Am. Chem. Soc., 2005, 127, 8234-8235.
- 25 I. Lahiri, V. P. Verma and W. Choi, Carbon, 2011, 49, 1614-1619.
- 26 W. Z. Wang, B. Q. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton and Z. Ren, *Adv. Mater.*, 2006, 18, 3275-3278.
- 27 G. Xing, X. Fang, Z. Zhang, D. Wang, X. Huang, J. Guo, L. Liao, Z. Zheng, H. Xu and T. Yu, *Nanotechnology*, 2010, 21, 255701.
- 28 J. O. Hwang, D. H. Lee, J. Y. Kim, T. H. Han, B. H. Kim, M. Park, K. No and S. O. Kim, *J. Mater. Chem.*, 2011, 21, 3432-3437.
- 29 Z. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu and H. Cheng, *Adv. Mater.*, 2009, 21, 1756-1760.
- 30 H. J. Jeong, H. D. Jeong, H. Y. Kim, S. Y. Jeong, J. T. Han and G. W. Lee, *Small*, 2013, 9, 2182-2188.
- 31 Y. Tang, H. Cong, Z. Wang and H.-M. Cheng, Appl. Phys. Lett., 2006, 89, 253112.
- 32 J. H. He, R. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen and Z. L. Wang, Adv. Mater., 2006, 18, 650-654.
- 33 Y. Tang, H. Cong, Z. Chen and H. Cheng, Appl. Phys. Lett., 2005, 86, 233104.
- 34 X. Fang, Y. Bando, G. Shen, C. Ye, U. K. Gautam, P. M. Costa, C. Zhi, C. Tang and D. Golberg, *Adv. Mater.*, 2007, **19**, 2593-2596.
- 35 F. Lu, W. Cai, Y. Zhang, Y. Li, F. Sun, S. H. Heo and S. O. Cho, J. Phys. Chem. C, 2007, 111, 13385-13392.

- 36 Q. Y. Zhang, J. Q. Xu, Y. M. Zhao, X. H. Ji and S. P. Lau, Adv. Funct. Mater., 2009, 19, 742-747.
- 37 J. Xu, G. Hou, H. Li, T. Zhai, B. Dong, H. Yan, Y. Wang, B. Yu, Y. Bando and D. Golberg, *NPG Asia Mater.*, 2013, **5**, e53.
- 38 M. Jha, R. Patra, S. Ghosh and A. K. Ganguli, J. Mater. Chem., 2012, 22, 6356-6366.
- 39 J. Xu, Y. Zhao, X. Ji, Q. Zhang and S. Lau, J. Phys. D: Appl. Phys., 2009, 42, 135403.
- 40 X. Fang, J. Yan, L. Hu, H. Liu and P. S. Lee, Adv. Funct. Mater., 2012, 22, 1613-1622.
- 41 L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando and D. Golberg, *Adv. Mater.*, 2010, 22, 3161-3165.
- 42 X. Zhang, L. Gong, K. Liu, Y. Cao, X. Xiao, W. Sun, X. Hu, Y. Gao, J. Chen and J. Zhou, *Adv. Mater.*, 2010, **22**, 5292-5296.
- 43 S. Das, S. Saha, D. Sen, U. K. Ghorai, D. Banerjee and K. K. Chattopadhyay, J. Mater. Chem. C, 2014, 2, 1321-1330.
- 44 G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169.
- 45 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, *Phys. Rev. Lett.*, 2008, **100**, 136406.