Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is C The Royal Society of Chemistry 2019

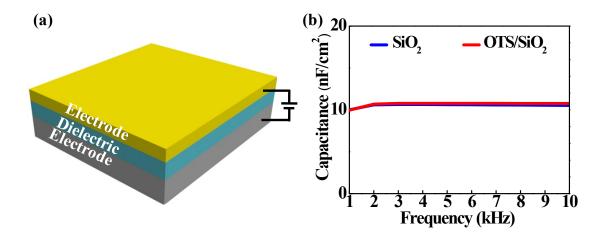
**Electronic Supplementary Information** 

Low surface energy interface-derived low-temperature

recrystallization behavior of organic thin film for boosting carrier

mobility

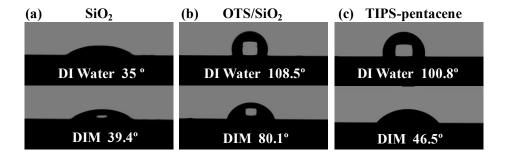
Shuya Wang, Zhan Wei, Yahan Yang, Xiaoli Zhao,\* Qingxin Tang,\* Yanhong Tong,\*


Yichun Liu

Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of

UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal

University, 5268 Renmin Street, Changchun 130024, China.


\*E-mail: tangqx@nenu.edu.cn, zhaox1326@nenu.edu.cn, tongyh@nenu.edu.cn



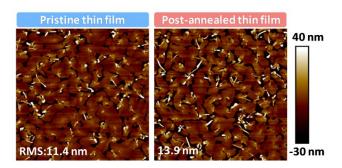
**Fig. S1** (a) Schematic diagram of capacitance measurement. (b) Capacitance-frequency curve (C-F) for the dielectric. Capacitances of  $SiO_2$  and  $OTS/SiO_2$  are approximately 10 nF cm<sup>-2</sup>.



Fig. S2 Contact angle of hexane on the  $OTS/SiO_2$  dielectric layer.

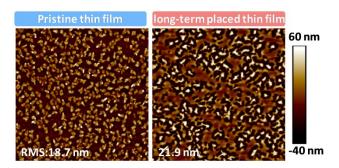


**Fig. S3** Contact angle of deionized (DI) water and diiodomethane (DIM) on different dielectrics and TIPS-pentacene thin film. (a) SiO<sub>2</sub>; (b) OTS/SiO<sub>2</sub>; (c) TIPS-pentacene thin film.


The polar component  $(\gamma^p)$  and dispersive component  $(\gamma^d)$  of surface energy were counted to solve two simultaneous equations. The total surface energy  $(\gamma^S)$  was counted from the sum of these components.<sup>S1</sup>

$$1 + \cos \theta = \frac{2\sqrt{\gamma^d}\sqrt{\gamma_{lv}^d}}{\gamma_{lv}} + \frac{2\sqrt{\gamma^p}\sqrt{\gamma_{lv}^p}}{\gamma_{lv}} \tag{1}$$

Diiodomethane (DIM) and deionized (DI) water were used as test liquids. Measurement results of the surface energy of dielectrics and TIPS-pentacene thin film are shown in Table S1.


Table S1 Contact angle and surface energy data for different dielectrics and TIPS-pentacene thin film.

| Dielectrics and      | Contact angles (degree) avg. ±avg. dev |          | Surface energy (mJ m <sup>-2</sup> ) avg. ±avg. dev |               |            |
|----------------------|----------------------------------------|----------|-----------------------------------------------------|---------------|------------|
| semiconductor        | DI Water                               | DIM      | $\gamma^p$                                          | $\gamma^d$    | $\gamma^S$ |
| $SiO_{2}$            | 35.5±0.7                               | 39.4±0.3 | 26.2±0.3                                            | 39.9±0.1      | 66.1±0.4   |
| OTS/SiO <sub>2</sub> | 108.5±0.4                              | 80.3±0.6 | $0.6 \pm 0.07$                                      | 17.3±0.3      | 17.9±0.2   |
| TIPS-pentacene       | $100.9 \pm 0.4$                        | 46.0±0.8 | 0.04±0.01                                           | $36.46\pm0.4$ | 36.5±0.4   |



**Fig. S4** AFM images (20 μm×20 μm) of vacuum-deposited TIPS-pentacene thin films on a low surface energy OTS/SiO<sub>2</sub> dielectric layer before and after post-annealing treatment.

Fig. S4 shows AFM images of vacuum-deposited TIPS-pentacene thin films on a low surface energy OTS/SiO<sub>2</sub> dielectric layer before and after post-annealing treatment. 20 nm TIPS-pentacene thin films was deposited directly on the OTS/SiO<sub>2</sub> dielectric layer by vacuum thermal evaporation at a rate of ca. 0.1 Å s<sup>-1</sup> at a substrate temperature of 70 °C. The post-annealing condition is fixed at 40 °C for 15 min. It can be obviously observed that the morphology of the TIPS-pentacene thin film is almost no change after the post-annealing treatment. It can be ascribed that the morphology of vacuum-deposited TIPS-pentacene thin film is stable, while the morphology of solution-processed TIPS-pentacene thin film is metastable. S2,83



**Fig. S5** AFM images (20 μm×20 μm) of solution-processed TIPS-pentacene thin films on a low surface energy OTS/SiO<sub>2</sub> dielectric before and after long-term placement.

Fig. S5 shows AFM images of spin-coated TIPS-pentacene thin films on a low surface energy OTS/SiO<sub>2</sub> dielectric layer before and after long-term placement. It can be observed that TIPS-pentacene thin films before and after long-term placement present rather different morphology, while the morphology after long-term placement is not improved. The RMS of TIPS-pentacene thin films after long-term placement increases to 21.9 nm. Therefore, after long-term placement, TIPS-pentacene thin film on the OTS/SiO<sub>2</sub> dielectric layer can recrystallize, but does not become smooth. It can be attributed to the fact that TIPS-pentacene molecules can move at room temperature, S4 but the small kinetic energy can not move TIPS-pentacene molecules to the appropriate distance, thus failing to form the smooth TIPS-pentacene thin film.

## **REFERENCES**

- S1 D. K. Owens and R. C. Wendt, Journal of Applied Polymer Science, 1969, 13, 1741-1747.
- S2 Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang and Z. Bao, *Nat. Commun.*, 2014, 5, 3005.
- S3 E. Treossi, A. Liscio, X. Feng, V. Palermo, K. Mullen and P. Samori, *Small*, 2009, 5, 112-119.
- S4 A. Troisi, G. Orlandi and J. E. Anthony, Chem. Mater., 2005, 17, 5024-5031.