Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

1	Supplementary Information
2 3 4 5 6	Remarkable Surface Enhanced Raman Scattering on Self-assembled {201} Anatase
7 8	Yaqin Yu, ^{†,‡} Jingjing Du, ^{†,‡} and Chuanyong Jing ^{*,†,‡}
9	[†] State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for
10	Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
11 12 13	[‡] University of Chinese Academy of Sciences, Beijing 100049, China.
14	
15	Corresponding Author
16	*E-mail: cyjing@rcees.ac.cn
17	
18	
19	
20	
21	

22 1. Chemicals and Materials.

23 N, N dimethyl formamide (DMF), tetrabutyltitanate (TBOT), P25, and dopamine (DA) were 24 purchased from Sigma-Aldrich (St. Louis, US). Hydrofluoric acid (HF), sodium hydroxide 25 (NaOH), potassium hydroxide (KOH), and sodium chloride (NaCl) were from Sinopharm 26 Chemical Reagent Co., Ltd (China). Mili-Q water (>18.2 M Ω) was used to prepare all the 27 solutions.

28 2. Fabrication of Faceted TiO₂ Nanocrystals.

29 {201} TiO₂: 8 mL HAc and 12 mL DMF were mixed under magnetic stirring, and 0.5 mL 30 tetrabutyltitanate (TBOT) was added dropwise. After reacting for 10 min at room temperature, 31 the homogeneous solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave 32 and kept in an electric oven at 180 °C for 12 h. After cooled down, the precipitate was separated 33 by centrifugation at 10000 rpm for 10 min, washed with ethanol for five times, and then oven 34 dried at 60 °C overnight.¹

 $\{001\}$ TiO₂: 2.5 mL TBOT was added to 60 mL isopropyl alcohol. After the solution was gently stirred for a few minutes, 1 mL HF was added dropwise. The solution was then transferred to a 100 mL autoclave and kept in oven at 200 °C for 24 h. After cooled to room temperature, the resulted precipitate was harvested via centrifugation, washed thoroughly with ethanol, and dried at 60 °C overnight.²

{101} TiO₂: 2 g P25 was added to 80 mL of 10 mol·L⁻¹ KOH solution under magnetic 40 stirring to form a white suspension. The suspension was equally divided into two 100 mL 41 autoclaves and kept at 200 °C for 24 h. The resulted precipitate was washed with HCl for several 42 43 times to attain pH=5, then finally dried at 60°C overnight. After that, 0.2 g of the prepared potassium titanate nanowires (KTNWs) were dispersed in 24 mL deionized (DI) water under 44 ultrasonic treatment for 1 h. The solution was then transferred into a 100 mL autoclave and kept 45 at 200 °C for 48 h. The products were collected by centrifugation at 10000 rpm for 10 min, 46 washed with DI water and oven dried at 60 °C overnight.³ 47

48 {100} TiO₂: 2 g P25 was added to 80 mL of 10 mol·L⁻¹ NaOH solution under magnetic 49 stirring to form a white suspension. The suspension was then transferred to a 100 mL autoclave 50 and kept in oven at 120 °C for 24 h. Sodium titanate nanowires (NaTNWs) were separated from 51 solution by centrifugation and washed with DI water to attain pH=10.5. After that, 2 g NaTNWs 52 were dispersed into 80 mL DI water, then transferred to a 100 mL autoclave and heated at 200 53 °C for 24 h. The resulted white precipitates were separated from solution by centrifugation, 54 washed with DI water, and finally oven dried at 60 °C.⁴

55 3. Characterizations.

The surface morphology of TiO₂ was examined using a field emission scanning electron 56 microscope (FE-SEM, SU-8000, Hitachi, JPN) and high resolution-transmission electron 57 58 microscope (HRTEM, JEM-2100F, JEOL. Ltd., JPN) The crystal structure was determined using an X'Pet PRO diffractometer (PANalytical, Netherlands) with Cu Ka radiation. 59 The Brunauer-Emmet-Teller (BET) specific surface area was recorded form N2 adsorption-60 61 desorption isotherms using a Surface Area and Porosity Analyzer (ASAP 2020 Plus HD88, Micromeritics, USA) after degassed in a vacuum at 120°C for 12 h. The electron 62 paramagnetic resonance (EPR) signals were recorded on a Bruker EMX plus 63 spectrometer (LOT-Oriel Gmbh&Co. KG, Germany). The surface OH density was detected 64 based on thermogravimetric analysis (TGA) using a TA SDTQ600 (TA instruments, USA). The 65 UV-vis diffuse reflectance spectra (DRS) were recorded on a scanning UV-vis 66 spectrophotometer (UV-DRS, UV-2450, Shimadzu, JPN) equipped with an integrating sphere 67 assembly, while BaSO₄ was used as a reference. 68

69 **3.1. SEM and TEM.**

The SEM and TEM images (**Figure 1**A1, B1) show that $\{201\}$ TiO₂ crystals were sea urchinlike spheres (radius = 500 nm) with exposed $\{201\}$ facets and unexposed $\{401\}$ facets.¹ The $\{100\}$ TiO₂ nanorods about 500 nm in length exposed dominant $\{100\}$ facets (80%) with a lattice spacing of 0.38 nm (Figure 1A2, B2).⁴ The highly truncated bipyramidal $\{001\}$ TiO₂ exhibited two square {001} facets (82%) with a lattice spacing of 0.19 nm.² The thickness of {001} TiO₂ is 6 nm and a length of 40-50 nm (Figure 1A3, B3). The {101} TiO₂ was octahedral crystal with the long axis size of 100 nm (Figure 1A4, B4), and the measured lattice spacing was 0.35 nm corresponding to the {101} facet (98%).³

78

79 **3.2. XRD Spectra.**

80 The powder X-ray diffraction (XRD) spectra (**Figure S1**) illustrated that the crystal phase of 81 four samples was anatase (*I*4₁/amd, No. 01-084-1286). The tetragonal unit cell of anatase grows 82 preferentially along the [101] orientation, resulting in highest (101) diffraction peak in XRD 83 spectra.

84

Figure S1. XRD characterization of TiO_2 with {101}, {100}, {001}, and {201} facets.

86

87 3.3. Physicochemical Properties of Four Facets.

88 The differences in morphology of four facets contributed to the various specific surface area 89 (S_{BET}), {101} (23.49 m²·g⁻¹) > {201} (23.22 m²·g⁻¹) > {001} (21.17 m²·g⁻¹) > {100} (16.54 90 m²·g⁻¹). The concentration of oxygen vacancy (g=2.00013) followed the order {100} > {201} 91 > {101} > {001} (**Figure S2**A1-A4), contributed to the specific atomic structure. The surface 92 OH density of {201}, {100}, {001}, and {101} TiO₂ was 3.6, 3.8, 6.7, and 0.9 OH·nm⁻² (Figure 93 S2B1-B4), ascribed to the different under-coordinated Ti sites. The crystal plane has a great 94 impact not only on TiO₂ morphology and surface atomic arrangement, but also on its physical 95 and chemical properties.

97 Figure S2. EPR spectra (A1-A4) and TGA curves (B1-B4) of TiO₂ with {101}, {100}, {001},
98 and {201} facets.

99

100 4. SERS Experiments.

Dopamine (DA) was employed as the probe molecule. A mixture containing 10-4 to 10-6 M DA 101 and 0.1 g·L⁻¹ TiO₂ was dropped on silicon wafers and detected by the state translation 102 nanoparticle-enhanced Raman spectroscopy (STNERS) method, which is based on transition 103 from wet to dry states. ⁵ Raman spectra were collected on a laser confocal microscopy Raman 104 105 spectrometer (LabRAM HR Evolution, HORIBA, JPN) with excitation wavelength at 532 nm. 106 The spectra were acquired for 10 s with three accumulations. For each sample, the final Raman 107 spectrum was an average of fifteen Raman spectra at different positions on the sample. The 108 rough first-order enhancement factors (EFs) was approximately estimated by comparing intensity of primary peak at 1484 cm⁻¹ according to the following equation (1) 109

110	$EF = (I_{SERS}/I_R) \times (N_R/N_{SERS})$	(1)
111	$N_R = (C_R \times V_R)/S_R$	(2)
112	$N_{SERS} = (C_{SERS} \times V_{SERS}) / S_{SERS}$	(3)

- 113 114 where I_{SERS} and I_R are the intensity of same Raman band for SERS and non-SERS spectra of 115 DA, respectively, and N_{SERS} and N_R are the average number of DA molecules in scattering area 116 for SERS and non-SERS measurement. C_R and C_{SERS} are the molar concentration of DA without 117 and with TiO₂ substrate, V_R and V_{SERS} are the volume of DA droplet. S_{SERS} is the effective area 118 of TiO₂ substrate after solvent evaporation, S_R is the area of DA droplet on Si wafers after 119 evaporation.
- 120
- 121

Table S1. SERS-active TiO₂ semiconductors

Semiconductors	Analyte	Maximum EF	Excited wavelength (nm)	Ref.
TiO ₂ particle	pyridine	low	514.5	6
TiO ₂ mesoporous film	N719 dye	Low	532	7
TiO ₂ particle	4-MBA	10 ² -10 ³	514.5	8-9
TiO ₂ NPs	dopamine	10 ³	442	10-11
TiO ₂ colloid	pyrocatechol		514.5	12
TiO ₂ NPs	nitrothiophenol	10 ² -10 ³	633	13
3D nanostructure	dye	106	532	14
TiO ₂ microarray	MB	104	532	15
TiO ₂ electrode	cytochrome b5	8.6	413	16
Mesoporous TiO ₂ NPs	4-MBA	10 ³ -10 ⁵	532	17-18
TiO ₂ , WO ₃ film	R6G	10 ³ -10 ⁵	532	19-20
W ₁₈ O ₄₉	R6G	3.4×10 ⁵	532.8	21
Cu ₂ O	R6G	8.0×10 ⁵	647	22
Cu ₂ O concave sphere	crystal violet	2.8×10 ⁵	647, 514.5	23
{201} TiO ₂	dopamine	1.6×10 ⁶	532	This work

I able S2. Raman frequency (cm ⁻¹) and assignment of DA.										
Band	DA	{201}- DA	{100}- DA	{001}- DA	{101}- DA	Assignment				
v ₁₅	1150	1156	1152	1152	1152	N-H in-plane vibration ²⁴				
ν _{C-0}	1289	1268	1272	1272	1274	Stretching vibrations of the catechol carbon–oxygen ²⁵				
v ₃	1324	1334	1335	1335	1335	Bending vibrations of the aromatic carbon–hydrogen, v (C-H) ²⁵				
v_{19a}	1466	1426	1432	1434	1432	Stretching vibration of the C-C ²⁴				
V19b	1528	1484	1491	1494	1491	Stretching vibration of the C-C bond attached with oxygen ²⁵				

Figure S3 shows Raman spectra of DA with 5×10^{-4} , 5×10^{-5} to 5×10^{-6} M concentrations. The selective enhancement indicates that the SERS behavior of {201} TiO₂ largely depends on different coordination environment.²¹

7

- Figure S3. (A) Raman spectra collected for $\{201\}$ TiO₂ at three different concentrations DA $(5 \times 10^{-4}, 5 \times 10^{-5}, \text{ and } 5 \times 10^{-6} \text{ M})$. (B) Raman profile of DA $(5 \times 10^{-4} \text{ M})$ on substrates deposited with $\{201\}$ TiO₂ sample compared with that for bare Si and $\{201\}$ TiO₂ substrate.
- 132

133 5. Online In Situ Flow Cell ATR-FTIR.

134 Flow-cell attenuated total reflectance (ATR) Fourier transform infrared (FTIR) experiments were performed using a Thermo-Nicolet iS50R FTIR spectrometer equipped with a liquid-135 136 nitrogen cooled MCT detector. The FTIR information was summarized in Table S3, and the peak assignments were conducted based on literature. ²⁵ Compared with DA standard (Figure 137 S4), phenol hydroxyl bending vibration v (C-OH) at 1206 cm⁻¹ was absent, and Ti-O-C 138 stretching vibration at 1226 cm⁻¹ was present in the spectrum of {201} TiO₂-DA. The 139 140 occurrence was associated with the chemical bonding of DA to {201} TiO₂ following a double deprotonation and forming two O-Ti bonds with two surface under-coordinated Ti sties. 141

Figure S4. (A) *In situ* ATR-FTIR spectra for DA adhesion to {201} TiO₂ at pH 5. (B) FTIR
spectra for DA and {201} TiO₂-DA.

- 145
- 146
- 147
- 148
- 149

Peak position / cm ⁻¹	Assignment
1125	C-C stretching vibration
1158	C-C stretching vibration
1206	in-plane bending vibrations of the phenolic group C-OH
1275	CH ₂ bending vibrations
1425	δ(N-H)
1494	aromatic C=C stretching vibration

152 6. DFT Calculations.

Density functional theory (DFT) calculations were performed using Castep package in 153 Materials Studio 7.0 (Accelrys, San Diego, CA). The slab model was cleaved, five layers of 154 155 atoms were extracted, and a 2×2 supercell was built with a vacuum slab of 15 Å. A plane-wave 156 cutoff energy of 340 eV was selected, and ultrasoft pseudopotentials were used in the treatment 157 of core electrons. The exchange-correlation energy was calculated with the generalized gradient approximation (GGA) mode of Perdew-Burke-Ernzerhof (PBE). The k-point over the Brillouin 158 159 zone was set as a $1 \times 2 \times 1$ grid. The BFGS method was employed for geometry optimization until 160 the SCF and energy tolerances were less than the convergence criteria. The DFT+U method was employed, and U=4.0 eV was used, as determined previously.²⁶ 161

162 The adsorption energies (E_{ads}) was calculated according to the equation:

163
$$E_{ads} = E_{mol+surf} - (E_{surf} + E_{mol})$$
(4)

164 Where $E_{mol+surf}$ is the total energy of surface complexes; E_{surf} is the energy of isolated TiO₂ 165 facets; and E_{mol} is the energy of an isolated DA molecule. Note that a negative value for E_{ads} 166 suggests a stable adsorption configuration.

167 To investigate the change of electron density upon adsorption, the electron density 168 difference ($\Delta \rho$) was calculated by subtracting the electron density of the isolated DA ($\Delta \rho_{DA}$) 169 and surface ($\Delta \rho_{surf}$) from the total electron density of the system ($\Delta \rho_{DA+surf}$) as follows: $\Delta \rho =$ 170 $\Delta \rho_{DA+surf} - (\Delta \rho_{surf} + \Delta \rho_{DA})$.

171

172 **6.1. Adsorption Mode of DA on {201} TiO₂.**

- 173 Multiple possibilities of DA adsorption on $\{201\}$ TiO₂ surface were considered (Figure S5).
- 174 The bidentate mode of OH groups of DA bonding on two under-coordinated Ti_{4c} sites was the
- 175 most stable mode based on the adsorption energy.

176

177

Figure S5. Multiple adsorption mode of DA on the {201} anatase terminations.

178

179 6.2. Surface-Active Sites of Four Faceted TiO₂.

- 180 The adsorption structure of DA on four facets was the bidentate mode of bonding OH on two
- 181 under-coordinated Ti sites (Figure S6). The active adsorption sites on {101}, {001} and {100}
- 182 facets are five-coordinated Ti_{5c} atoms, and on {201} facets are four-coordinated Ti_{4c} atoms.

- 184 Figure S6. Charge transfer (A-1, B-1, C-1, and D-1) and adsorption energy (A-2, B-2, C-2, and
- 185 D-2) obtained for {201}, {001}, {100}, and {101} anatase terminations.
- 186
- 187 6.3 Surface Electronic Structure.

Figure S7. PDOS of O and Ti before (dashed line) and after (solid line with filled area) adsorption for {201} (Ti40 (Ti_{4c}), Ti20 (Ti_{4c}), O81, and O82), {100} (Ti13 (Ti_{5c}), Ti28 (Ti_{5c}), 081, and O82), {001} (Ti9 (Ti_{5c}), Ti29 (Ti_{5c}), O81, and O82), and {101} facets (Ti12 (Ti_{5c}), 192 Ti36 (Ti_{5c}), O81, and O82).

193

194 7. Charge Transfer between DA and TiO₂.

195 7.1. XANES study.

196 The DA adsorption samples were prepared by reacting 0.1 mM DA with 0.1 g·L⁻¹ TiO₂ in 0.01 M NaCl solution at pH 5. After 24 h mixing, the suspensions were centrifuged at 10000 rpm 197 198 and freeze-dried under vacuum. All solid samples were deposited on one side of a piece of 199 Kapton tape and placed in front of X-ray beam to minimize self-absorption. The K-edge spectra 200 of O and L-edge of Ti were collected at beamline 08U at the Shanghai Synchrotron Radiation Facility (SSRF, China). X-ray absorption near-edge structures (XANES) spectra were acquired 201 202 from - 20 to 20 eV relative to the O K-edge of 543 eV and the Ti L-edge of 460 eV. Spectral 203 data processing was analyzed using the Athena program in the Demeter computer package.

Figure S8. O K-edgeXANES spectra of {201}, {100}, {001}, and {101} TiO₂ samples.

Figure S9. (A) Ti L-edge and (B) O K-edge XANES spectra of DA on {201} TiO₂ samples at
pH 5.

211

 Table S4. Intensity of Ti L-edge and O K-edge XANES spectra.

Sor		L _{III}			L _{II}		
Sample		E-t _{2g}	E-e _g	It _{2g} /Ie _g	E-t _{2g}	E-e _g	It _{2g} /Ie _g
TiO	Ti L-edge	459.2	460.9	0.90	464.5	466.4	0.87
ΠO_2	O K-edge	531.9	534.5	1.22			
	Ti L-edge	458.9	460.8	0.66	464.2	466.3	0.70
110 ₂ -DA	O K-edge	531.9	534.5	1.08			

212

213 7.2. UV-DRS Study.

The spectrum for DA-{201} TiO₂ presented increased optical adsorption within the whole visible light range, shifted from the band-band transition for TiO₂ (398 nm) and the photoabsorption onset for DA (312 nm). Interestingly, the absorbance followed the order {201} (0.3) $217 > \{100\} (0.18) > \{001\} (0.15) > \{101\} (0.11) (Figure S10).$

Figure S10. Absorption spectra for DA adsorbed on (A) $\{201\}$, (B) $\{001\}$, (C) $\{100\}$, and (D) $\{101\}$ TiO₂ compared with neat TiO₂ and DA.

222 8. In Situ Raman-EC Analysis.

223 To evaluate the charge transfer between adsorbed DA and TiO₂, in-situ Raman-224 electrochemistry (EC) measurements were performed with a three-electrode system on an 225 electrochemical workstation (PGSTAT302N, Autolab, Switzerland). The commercial glasscarbon electrode (GCE) modified with TiO2 served as the working electrode, Ag/AgCl as the 226 227 reference electrode, and Pt wire as the counter electrode. The electrolyte was prepared with 0.1 228 M NaCl and 0.1 mM DA. The photocurrent responses were measured by chrono-amperometry 229 at an applied potential of 1.23 V under continuous on-off Raman excitation (λ =532 nm) cycles. 230 The difference photocurrent (ΔI) was obtained by subtracting the current without Raman 231 excitation (I_{black}) from the current with Raman excitation (I_{light}) as follow: $\Delta I = I_{light} - I_{black}$.

Table S5. Photocurrent of $\{201\}$, $\{101\}$, $\{001\}$, and $\{100\}$ TiO₂ electrodes in 0.1 M NaCl 234 without and with 0.1 mM DA.

	Current (µA·cm ⁻²)	{201} TiO ₂	{100} TiO ₂	{001} TiO ₂	{101} TiO ₂
	I _{light}	2.36	1.75	2.12	2.18
TiO ₂	I _{dark}	2.28	1.68	2.04	2.10
	ΔI	0.08	0.08	0.08	0.08
	I _{light}	24.83	19.03	21.51	21.95
TiO ₂ +DA	I _{dark}	23.70	18.14	20.76	21.33
	ΔI	1.13	0.89	0.75	0.63

Table S6. Physicochemical properties of four faceted TiO₂.

Facets	E _{sur} (eV)	$\frac{S_{BET}}{(m^2 \cdot g^{\text{-}1})}$	OH density (OH·nm ⁻²)	Oxygen vacancies (a.u.)	E _{ads} (eV)	$\mathrm{I}t_{2g}/\mathrm{I}e_{g}$	EC current $(\mu A \cdot cm^{-2})$
{201}	1.72	23.22	3.6	0.7	-1.43	1.22	1.13
{100}	0.89	16.54	3.8	4.42	-0.26	1.03	0.89
{001}	0.75	21.17	6.7	0.01	-3.14	1.01	0.75
{101}	0.63	23.49	0.9	0.63	-0.18	0.95	0.63

Figure S11. Relationship of EC-measured photocurrent and S_{BET} (A), OH density (B), EPR intensity of oxygen vacancies (C), surface energy (E_{sur}) (D), adsorption energy (E_{ads}) (E), and It_{2g}/Ie_g analyzed by XANES (F).

244 9. FDTD simulation.

The distribution of electromagnetic field intensity of faceted TiO_2 was simulated with threedimensional finite difference time domain (FDTD) solutions software (Lumerical Solutions Inc, Vancouver Canada). The mesh size was 1 nm and simulation time was 1000 fs. A 532 nm plane wave light source was used to calculate the electromagnetic field distribution. The refractive index of TiO_2 was 2.55. The light was incident along the z axis, with the polarization along the x axis, and the refractive index of surrounding medium was 1.

Four faceted TiO₂ models were established in accordance with their geometrical parameter determined by SEM and TEM. The {201} TiO₂ spheres (r=500 nm) were composed with exposed {201} facets (α =22.5°) and unexposed {401} facets (α =11.5°). The {100} TiO₂ crystals (l=500 nm) were composed with {100} facets (l=340 nm) and {101} facets (l=80 nm). The {001} TiO₂ particles were truncated bipyramids with side length of 40-50 nm. The {101} TiO₂ particles were octahedral crystals with long axis size of 100 nm. 257 Considering that asymmetric geometry would impact the transmission of surface plasmon 258 polaritons, the influence of incidence angle (Θ) on the field distribution was studied in detail by FDTD method.²⁸⁻²⁹ For $\{001\}$ and $\{100\}$ TiO₂ (Figure S13 and 14), as incidence angle 259 increased from 0° to 90°, the spatial distribution of maximal field enhancement changed from 260 edge to specific face. At the same time, the EF of $\{001\}$ and $\{100\}$ TiO₂ decreased from 21 to 261 9 and from 41 to 15, respectively. Conversely, as incidence angle increased from 0° to 90°, the 262 263 EF of $\{101\}$ and single spline $\{201\}$ TiO₂ increased from 12 to 136 and from 14 to 50 (Figure S15 and 16). The spatial distribution of maximal field enhancement changed from edge to 264 265 specific face, and then to sharp tips. The different influence of incidence angle on maximal field 266 enhancement indicated that the field enhancement of TiO₂ crystals was influenced by asymmetric structure. 267

269 Figure S12. SERS enhancement at 1484 cm⁻¹ of fifteen random locations on $\{201\}$ TiO₂

Figure S13. Maximal electric field enhancement of {001} TiO₂ with θ=0°, 10°, 20°, 30°, 40°,
50°, 60°, 70°, 80°, 90°.

276 Figure S14. Maximal electric field enhancement of $\{100\}$ TiO₂ with $\theta=0^{\circ}$, 10° , 20° , 30° , 40° , 277 50°, 60°, 70°, 80°, 90°.

280 Figure S15. Maximal electric field enhancement of {101} TiO₂ with θ=0°, 10°, 20°, 30°, 40°,
281 50°, 60°, 70°, 80°, 90°.

Figure S16. Maximal electric field enhancement of single spine $\{201\}$ TiO₂ with $\theta=0^\circ$, 10°, 285 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°.

287 **References**

- 288 1. H. B. Wu, J. S. Chen, X. W. Lou and H. H. Hng, Nanoscale, 2011, 3, 4082-4084.
- 289 2. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu,
- 290 Nature, 2008, 453, 638-641.
- 291 3. X. G. Han, F. Zhou, L. Li and C. Wang, Chem. Asian J., 2013, 8, 1399-1403.
- 4. H. T. Gao, X. M. Sui, D. M. Dai, C. D. Si, and G. J. Liu, *J. Nanosci. Nanotechnol.*, 2015, 15, 5193-5197.
- 294 5.L. B. Yang, P. Li, H. L. Liu, X. H. Tang and J. H. Liu, Chem. Soc. Rev., 2015, 44, 2837-2848.
- 295 6. H. Yamada and Y. Yamamoto, Surf. Sci., 1983, 134, 71-90.
- 296 7. C. P. Leon, L. Kador, B. Peng and M. Thelakkat, J. Phys. Chem. B, 2006, 110, 8723-8730.
- 297 8. L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu and J. R. Lombardi, *J. Phys. Chem. C*, 2008,
 298 112, 20095-20098.

- 299 9. X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao and J. R. Lombardi,
 300 J. Phys. Chem. C, 2012, 116, 8792-8797.
- 301 10. A. Musumeci, D. Gosztola, T. Schiller, N. M. Dimitrijevic, V. Mujica, D. Martin and T.
- 302 Rajh, J. Am. Chem. Soc., 2009, 131, 6040-6041.
- 303 11. S. J. Hurst, H. C. Fry, D. J. Gosztola and T. Rajh, J. Phys. Chem. C, 2011, 115, 620-630.
- 304 12. W. Ji, W. Song, I. Tanabe, Y. Wang, B. Zhao and Y. Ozaki, *Chem. Commun.*, 2015, **51**, 305 7641-7644.
- 306 13. J. S. Teguh, F. Liu, B. Xing and E. K. L. Yeow, Chem. Asian J., 2012, 7, 975-981.
- 307 14. D. Maznichenko, K. Venkatakrishnan and B. Tan, J. Phys. Chem. C, 2013, 117, 578-583.
- 308 15. D. Qi, L. Lu, L. Wang and J. Zhang, J. Am. Chem. Soc., 2014, 136, 9886-9889.
- 309 16. X. X. Han, C. Koehler, J. Kozuch, U. Kuhlmann, L. Paasche, A. Sivanesan, I. M. Weidinger
- 310 and P. Hildebrandt, Small, 2013, 9, 4175-4181.
- 311 17. L. Yang, D. Yin, Y. Shen, M. Yang, X. Li, X. Han, X. Jiang and B. Zhao, Phys. Chem.
- 312 Chem. Phys., 2017, 19, 18731-18738.
- 313 18. L. Yang, D. Yin, Y. Shen, M. Yang, X. Li, X. Han, X. Jiang and B. Zhao, *Phys. Chem.*314 *Chem. Phys.*, 2017, **19**, 22302-22308.
- 315 19. X. Zheng, F. Ren, S. Zhang, X. Zhang, H. Wu, X. Zhang, Z. Xing, W. Qin, Y. Liu and C.
- 316 Jiang, ACS Appl. Mater. Interfaces, 2017, 9, 14534-14544.
- 317 20. M. Wu, H. Wei, Y. Wei, A. Yao, J. Bu, J. Lin, Z. Dong, Y. Chen, Y. Cui and Z. Wu, Vib.
- 318 Spectrosc., 2018, **95**, 32-37.
- 319 21. S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng and
 320 Z. Zhao, *Nat. Commun.*, 2015, 6, 1-7.
- 321 22. J. Lin, Y. Shang, X. Li, J. Yu, X. Wang and L. Guo, Adv. Mater., 2017, 29, 1604797.
- 322 23. X. Li, Y. Shang, J. Lin, A. Li, X. Wang, B. Li and L. Guo, *Adv. Funct. Mater.*, 2018, 28,
 323 1801868.
- 324 24. S. Pande, S. Jana, A. K. Sinha, S. Sarkar, M. Basu, M. Pradhan, A. Pal, J. Chowdhury and
- 325 T. Pal, J. Phys. Chem. C, 2009, 113, 6989-7002.
- 326 25. M. L. Roldan, S. A. Centeno and A. Rizzo, J. Raman Spectrosc., 2014, 45, 1160-1171.
- 327 26. I. Urdaneta, A. Keller, O. Atabek, J. L. Palma, D. Finkelstein-Shapiro, P. Tarakeshwar, V.
- 328 Mujica and M. Calatayud, J. Phys. Chem. C, 2014, 118, 20688-20693.
- 329 27. W. Niu, Y. A. A. Chua, W. Zhang, H. Huang and X. Lu, J. Am. Chem. Soc., 2015, 137,
 330 10460-10463.
- 331 28. W. Zhang, Y. Feng, Y. Zhang, W. Chen and W. Lin, J. Phys. D-Appl. Phys., 2015, 48,
 332 275102.

333 29. B. Liu, Y.-F. Liu, S.-J. Li and X.-D. He, Opt. Commun., 2016, 369, 44-49.