Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

AIE-ligand-based luminescent Cd(II)-organic framework as the first

"turn-on" Fe³⁺ sensor in aqueous medium

Jinfang Zhang*, Simeng Ren, Hongchen Xia, Wen Jia, Chi Zhang*

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical

and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

Table of contents

- 1. Fig. S1 ¹HNMR spectroscopy of L.
- 2. Fig. S2 (a) L in single crystal structure (b) L in complex 1.
- 3. Fig. S3 The overlap of the fluorene ring.
- 4. Fig. S4 The 3-D supramolecular layered network of 1.
- 5. Fig. S5 The PXRD of 1.
- 6. Fig. S6 The TGA of 1.
- 7. Fig. S7 Photoluminescence (PL) spectra of L in DMF/water mixture with various water fractions (f_w).
- 8. Fig. S8 The UV-vis absorption spectra of 1 (a) in solid state; (b) aqueous medium.
- **9.** Fig. S9 (a) The solid excitation and emission spectra of 1; (b) the excitation and emission spectra of the water suspensions of 1.
- 10. Fig. S10 (a) The XPS of 1 and 1@Fe; (b) Fe 2p spectra of 1@Fe.
- 11. Table S1 Selected bond lengths (Å) for 1.
- **12. Table S2** Selected angles (°) for **1**.
- 13. Table S3 Selected H bond lengths (Å) for 1.

Fig. S1 ¹HNMR spectroscopy of L.

Fig. S2 (a) the single crystal structure of L; (b) the structure of L in MOF 1.

Fig. S3 The overlap of the fluorene ring (part of atoms from H_2NDA and L are omitted for clarity).

Fig. S4 The 3-D supramolecular framework of 1.

Fig. S5 The PXRD of 1.

Fig. S6 The TGA of 1.

Fig. S7 Photoluminescence (PL) spectra of L in DMF/water mixture with various water fractions (f_w).

Fig. S8 The UV-vis absorption spectra of 1 (a) in solid state; (b) aqueous medium.

Fig. S9 (a) The solid excitation and emission spectra of **1**; (b) the excitation and emission spectra of the water suspensions of **1**.

Fig. S10 (a) The XPS of 1 and 1@Fe; (b) Fe 2p spectra of 1@Fe.

Compound 1			
Cd(1)-O(6)#1	2.3078(17)	Cd(1)-O(1)	2.320(2)
Cd(1)-N(1)	2.324(2)	Cd(1)-O(3)	2.3249(17)
Cd(1)-O(2)	2.339(2)	Cd(1)-N(2)	2.352(2)
#1 -x, y+1/2, -z+1/2 #3 -x, y-1/2, -z+1/2	#2 -x+1, y-1/2, - #4 -x+1, y+1/2, -		

Table S1 Selected bond lengths (\AA) for 1

Table S2 Selected angles (°) for 1

Compound 1			
O(6)#1-Cd(1)-O(1)	91.42(7)	O(6)#1-Cd(1)-N(1)	99.22(7)
O(1)-Cd(1)-N(1)	92.89(7)	O(6)#1-Cd(1)-O(3)	86.74(6)
O(1)-Cd(1)-O(3)	85.69(7)	N(1)-Cd(1)-O(3)	173.91(6)
O(6)#1-Cd(1)-O(2)	93.87(7)	O(1)-Cd(1)-O(2)	173.55(8)
N(1)-Cd(1)-O(2)	89.90(8)	O(3)-Cd(1)-O(2)	90.93(7)
O(6)#1-Cd(1)-N(2)	170.97(7)	O(1)-Cd(1)-N(2)	88.12(8)
N(1)-Cd(1)-N(2)	89.81(7)	O(3)-Cd(1)-N(2)	84.23(7)
O(2)-Cd(1)-N(2)	86.07(8)		
#1 -x, y+1/2, -z+1/2 #3 -x, y-1/2, -z+1/2	#2 -x+1, y-1/2, #4 -x+1, y+1/2,	-z+3/2 -z+3/2	

Compound 1					
Donor – H	Acceptor	D – H	$\mathbf{H}\cdots\mathbf{A}$	D ··· A	D – H … A
O1 – H3	03	0.82	1.87	2.6424	157
O1 – H7	O6	0.86	2.07	2.8617	153
O2 – H8	05	0.86	1.82	2.6595	165
O2 - H9	O4	0.74	1.96	2.6553	158

Table S3 Selected H-bond lengths (Å) for 1