Supporting Information

Fabrication of a lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity

Jianming Yang, Xia Liao*, Gui Wang, Jia Chen, Wanyu Tang, Tengfei Wang and

Guangxian Li

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials

Engineering, Sichuan University, Chengdu 610065, People's Republic of China.

*Corresponding Author

E-mail address: xliao@scu.edu.cn (X. Liao)

1. The calculation of the power coefficients of absorption (A), reflection (R) and transmission (T) as well as the absorbed SE (SE_A), reflected SE (SE_R) and total SE (SE_T)

The S-parameters (S11 and S21) were recorded from the Agilent N5230 vector network analyzer to calculate the power coefficients and EMI SE through the following equations:

$$R = \left|S_{11}\right|^2 \tag{1}$$

$$T = \left| S_{21} \right|^2 \tag{2}$$

$$A = \mathbf{1} - \mathbf{R} \cdot T \tag{3}$$

$$SE_{R} = -1\theta lg (1 \quad R) \tag{4}$$

$$SE_{A} = -1\theta lg \left[T / (1 R) \right]$$
(5)

$$SE_T = SE_R + SE_A + SE_M \tag{6}$$

In the above equation, the SE_T is the sum of SE_A , SE_R and multiple reflections (SE_M). Moreover, SE_M can be ignored when SE_T is greater than 15 dB.¹⁻³

2. XPS spectra of Fe₃O₄@MWCNTs nanoparticles

The surface chemical compositions of Fe₃O₄@MWCNT-1, Fe₃O₄@MWCNT-2 and MWCNT were characterized by XPS. The corresponding survey of XPS spectra are exhibited in Fig. S1. Obviously, strong Fe_{2p3/2} and Fe_{2p1/2} signals can be observed from the XPS spectra of Fe₃O₄@MWCNT, which indicates the existence of Fe₃O₄ nanoparticles (as shown in Fig. S1a, b). The peaks located at 530.5 eV and 530.4 eV correlate to the binding energies of Fe-O in the spectrum of Fe₃O₄@MWCNT-1 and

 Fe_3O_4 @MWCNT-2, respectively.⁴⁻⁵ The appearance of Fe-O peak illustrates that Fe_3O_4 particles are successfully decorated on MWCNT.

Fig. S1 (a) XPS spectra, (b) Fe_{2p} spectra and (c) O_{1s} spectra of Fe₃O₄@MWCNT-1,

Fe₃O₄@MWCNT-2 and MWCNT.

3. Photographs showing the electrical properties, magnetic and flexibility properties of the VMQ/Fe₃O₄@MWCNT/Ag@NWF composite foams

Fig. S2 Digital photograph showing a favorable (a) conductivity, (b) magnetic response

of the VMQ/Fe₃O₄@MWCNT/Ag@NWF foams. The photographs of the composite

foams (c) after bending and (d) recovery.

References

1 D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, Adv.

Funct. Mater., 2015, 25, 559-566.

- 2 T. K. Gupta, B. P. Singh, S. R. Dhakate, V. N. Singh and R. B. Mathur, *J. Mater. Chem. A*, 2013, **1**, 9138–9149.
- 3 H. H. Chen, Z. Y. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z. F. Liu and Y. S. Chen, *Carbon*, 2017, **124**, 506–514.
- 4 Y. H. Zhan, J. Wang, K. Y. Zhang, Y. C. Li, Y. Y. Meng, N. Yan and H. S. Xia, *Chem. Eng. J.*, 2018, **344**, 184–193.
- 5 A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood

and N. Peyghambarian, Optical Materials Express, 2012, 2, 978-986.