Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Dual-field plated $\beta\mbox{-}Ga_2O_3$ nano-FETs with an off-state breakdown voltage exceeding

400 V

Jinho Bae¹, Hyoung Woo Kim², In Ho Kang², and Jihyun Kim^{1,*}

¹ Department of Chemical and Biological Engineering, Korea University, Anamdong-

5-Ga, Seoul 02841, South Korea

² Korea Electrotechnology Research Institute (KERI), Seongsan-gu, Changwon-si,

Gyeongsangnam-do 51543, South Korea

Fig. S1 (a) Simulation results of electric-field distribution at different β -Ga₂O₃ thickness and (b) simulation results of breakdown voltage of the β -Ga₂O₃ nano-FETs at varying β -Ga₂O₃ thickness.

Fig. S2 (a, b) Optical microscope images and (c) AFM image of the dual-field plated β -Ga₂O₃ nano-FETs. (d, e) DC output and (f) off-state three-terminal hard breakdown measurement of the dual-field plated β -Ga₂O₃ nano-FET.