Electronic Supplementary Information (ESI)

Doping Cu(I) ions into CdS/ZnS core/shell nanocrystals through a

cation exchange strategy

Mingrui Liu,^a Lijin Wang,^a Zhongyuan Guan,^a Zhenyang Liu,^a Yongsheng Zhu,^{*b} Aiwei Tang^{*a}

 ¹Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
E-mail: awtang@bjtu.edu.cn
² College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 73061, China
E-mail: yongshengzhu0001@163.com

Figure S1

Figure S1. Absorption and PL spectra of the unwashed CdS NCs after injecting Zn precursors for different reaction time.

Figure S2

Figure S2. (a) Absorption and PL spectra of the CdS/ZnS NCs after injecting 0.5 mL of Cu precursor solution, and the corresponding PL decay curves detected by the peaks at (b) shorter wavelength and (c) longer wavelength.

Figure S3

Figure S3. XPS spectra of CdS/ZnS core/shell NCs and CdS/ZnS NCs after injecting 1 mL of Cu(DDTC)₂: (a) Cd 3d; (b) Zn 2p; (c) S 2p; (d) Cu 2p.

Figure S4

Figure S4. (a) PL spectra of the Cu(I) doped CdS/ZnS NCs (0.5 mL of Cu precursor solution) during the heating process; (b) the ratio of the integral area of the peak at longer wavelength to that of the shorter wavelength for different heating temperature.