## Electronic Supplementary Information

## Table of Contents

## 1. General experimental procedures

Characterization

## 2. Synthesis

Scheme S1. The synthetic route of tPTI-Bpin and PTI-Bpin.

## 3. Figures and Tables

Chart S1. Molecular structures of previously reported ML-active polymorphs.
Fig. S1 (a) UV and PL spectra of tPTI-Bpin and PTI-Bpin in THF solution. (b) Fluorescence decay of tPTI-Bpin and PTI-Bpin in different states.
Fig. S2 The TGA (Thermogravimetric Analysis) curves of PTI-Bpin and tPTI-Bpin.
Fig. S3 Crystal molecular packing of tPTI-B1, tPTI-B2 and PTI-B.
Fig. S4 Single molecule conformations of tPTI-B1, tPTI-B2 and PTI-B in the crystals.
Table S1. Summarization of the torsion angles and intramolecular interactions in single molecules of tPTI-B1, tPTI-B2 and PTI-B.
Table S2. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B1.

Table S3. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B2.

Table S4. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of PTI-B.
Table S5. Structure data of crystals tPTI-B1, tPTI-B2 and PTI-B.

## 4. Structure Information

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of tPTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of tPTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR spectrum of PTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of PTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
Fig. $\mathbf{S 9}{ }^{1} \mathrm{H}$ NMR spectrum of tPTI-Br conducted in $\mathrm{CDCl}_{3}$.
Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of PTI-Br conducted in $\mathrm{CDCl}_{3}$.
Fig. S11 HRMS spectrum of tPTI-Bpin.
Fig. S12 HRMS spectrum of PTI-Bpin.

## 1. General experimental procedures

Characterization: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz Varian Mercury, using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or THF- $d_{8}$ as the solvent. High-resolution mass spectra were measured on an LTQ-Orbitrap Elite high-resolution mass spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ionization (ESI) source and a Dionex Ultimate 3000 UPLC system (ThermoFisher Scientific, Waltham, MA, USA). Mass spectra were measured on a ZAB 3F-HF mass spectrophotometer. Elemental analyses of carbon, hydrogen and nitrogen were performed on a PerkinElmer microanalyzer. PL spectra were recorded by a Hitachi F-4600 fluorescence spectrophotometer. The ML spectra were measured on a spectrometer of Acton SP2750 with CCD (SPEC-10, Princeton) as a power detector. Absolute photoluminescence quantum yield (PLQY) and fluorescence decay were recorded by an Edinburgh FLS980 spectrometer. The powder X-ray diffraction patterns were measured on Rigaku MiniFlex 600 at $25^{\circ} \mathrm{C}$ at 40 KV and 40 mA at a scan rate of $10^{\circ}(2 \theta) / \mathrm{min}$ (scan range: 5$60^{\circ}$ ). The single-crystal X-ray diffraction data were recorded by a Bruker Smart Apex II CCD diffractometer. The CCDC numbers of tPTI-B1, tPTI-B2 and PTI-B are 1948492, 1948484 and 1948485 respectively. Thermogravimetric analysis were carried out on TG 209 F1 of Thermogravimetric Analyzer under nitrogen at heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Differential scanning calorimetry were performed on NETZSCHDSC 200 PC instrument from room temperature to $250^{\circ} \mathrm{C}$ at a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen. The Gaussian 09 program was utilized to perform the TD-DFT calculations. The ground state $\left(\mathrm{S}_{0}\right)$ geometry was obtained from the single crystal structure and no further geometry optimization was conducted in order to maintain the specific molecular configuration and corresponding intermolecular locations.

## 2. Synthesis



Scheme S1. The synthetic routes of tPTI-Bpin and PTI-Bpin.
tPTT-Br: To a round-bottom flask fitted with a reflux condenser, was added 9,10-phenanthrenedione $(4.17 \mathrm{~g}, 20 \mathrm{mmol}), 4$-bromobenzaldehyde ( $1.90 \mathrm{~g}, 10 \mathrm{mmol}$ ), 4-tert-butylaniline ( $1.60 \mathrm{~mL}, 10 \mathrm{mmol}$ ), ammonium acetate $(4.63 \mathrm{~g}, 60 \mathrm{mmol})$ and acetic acid $(50 \mathrm{~mL})$. The resultant solution was stirred under nitrogen atmosphere at refluxing temperature for 4 h . After the reaction completed, the mixture was cooled to room temperature and quenched with a large amount of water, after stirring for 30 mins , the
mixture was filtered and washed with a small amount of methanol to afford a crude product. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane $=1 / 3$ ) to give the pure compound of tPTI-Br as a light yellow solid ( $4.06 \mathrm{~g}, 81 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 8.85-8.83(\mathrm{~d}, ~ J=8 \mathrm{~Hz} \mathrm{1H}, \mathrm{Ar}-\mathrm{H}), 8.77-8.75(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.71-8.69(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 7.76-7.72 (m, 1H, Ar-H), 7.67-7.60 (m, 3H, Ar-H), 7.53-7.49 (m, 1H, Ar-H), 7.47-7.40 (m, 6H, Ar-H), 7.28-7.24 (m, 1H, Ar-H), 7.19-7.17 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.45$ (s, 9H, -tBu). MS (ESI), m/z: 504.01, calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Br}$ : 504.12.

PTT-Br: To a round-bottom flask fitted with a reflux condenser, was added 9,10 -phenanthrenedione ( $4.17 \mathrm{~g}, 20 \mathrm{mmol}$ ), 4-bromobenzaldehyde ( $1.90 \mathrm{~g}, 10 \mathrm{mmol}$ ), aniline ( $0.91 \mathrm{~mL}, 10 \mathrm{mmol}$ ), ammonium acetate $(4.63 \mathrm{~g}, 60 \mathrm{mmol})$ and acetic acid $(50 \mathrm{~mL})$. The resultant solution was stirred under nitrogen atmosphere at refluxing temperature for 4 h . After the reaction completed, the mixture was cooled to room temperature and quenched with a large amount of water, after stirring for 30 mins , the mixture was filtered and washed with a small amount of methanol to afford a crude product. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane $=1 / 3$ ) to give the pure compound of PTI-Br as a light yellow solid ( $3.51 \mathrm{~g}, 78 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): 8.858.84 (d, $J=4 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), $8.78-8.76$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.71-8.70$ (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.75-7.73 (m, 1H, Ar-H), 7.67-7.61 (m, 4H, Ar-H), 7.53-7.50 (m, 3H, Ar-H), 7.46-7.41 (m, 4H, Ar-H), 7.27-7.26 (m, 1H, Ar-H), 7.18-7.16 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ). MS (ESI), m/z: 447.95, calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Br}$ : 448.06.
tPTT-Bpin: tPTI-Br ( $4.50 \mathrm{~g}, 9 \mathrm{mmol}$ ), bis(pinacolato)diboron ( $3.93 \mathrm{~g}, 13.5 \mathrm{mmol}$ ), potassium acetate $(3.10 \mathrm{~g}, 31.5 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}(0.33 \mathrm{~g}, 0.45 \mathrm{mmol})$ in anaerobic 1,4-dioxane ( 80 mL ) were refluxed under nitrogen for 12 h . After the reaction completed, the mixture was cooled to room temperature and then water ( 100 mL ) was added, and extracted with dichloromethane. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane $=1 / 4$ ) to give the pure compound of tPTI-Bpin as a white solid ( $1.91 \mathrm{~g}, 39 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$ ): 8.85-8.83 (d, $J=8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 8.78-8.76 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.73-8.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.78-7.71(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.69-7.63(\mathrm{~m}, 5 \mathrm{H}$, Ar-H), 7.53-7.49 (m, 1H, Ar-H), 7.46-7.44 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 7.30-7.27 (m, 1H, Ar-H), 7.22$7.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H},-\mathrm{tBu}), 1.35\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right)$ : $153.87,150.88,137.69,136.32,134.68,133.58,129.47$, $128.88,128.80,128.73,128.54,127.68$, 127.65, 127.48, 126.68, 125.90, 125.28, 124.36, 123.55, 122.86, 121.38, 84.33, 35.30, 31.53, 25.07. MS (ESI), m/z: 552.17, calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$ : 552.29. HRMS (ESI), m/z: [M $\left.{ }^{+}\right] 553.3006$, calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$ : 553.3027. Elemental analyses for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$ : C, 80.43; H, 6.75; N, 5.07. Found: C, 79.95; H, 6.98; N, 4.98. [CCDC 1948492, 1948484]

PTT-Bpin: PTI-Br ( $5.40 \mathrm{~g}, 12 \mathrm{mmol}$ ), bis(pinacolato)diboron ( $3.66 \mathrm{~g}, 14.4 \mathrm{mmol}$ ), potassium acetate $(4.10 \mathrm{~g}, 42 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}(0.44 \mathrm{~g}, 0.60 \mathrm{mmol})$ in anaerobic 1,4 -dioxane $(100 \mathrm{~mL})$ were
refluxed under nitrogen for 12 h . After the reaction completed, the mixture was cooled to room temperature and then water ( 150 mL ) was added, and extracted with dichloromethane. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane $=1 / 4$ ) to give the pure compound of tPTI-Bpin as a white solid ( $2.80 \mathrm{~g}, 47 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$ ): 8.88-8.86 (d, $J=8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 8.77-8.75 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.72-8.70(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77-7.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66-7.60(\mathrm{~m}, 6 \mathrm{H}$, Ar-H), 7.53-7.51 (m, 3H, Ar-H), 7.28-7.24 (m, 2H, Ar-H), 1.36 (s, 12H, -CH3). ${ }^{13}$ C NMR ( 100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\right): 150.94,139.08,137.77,134.69,133.48,130.51,130.20,129.48,129.45,128.85,128.72$, 128.56, 127.67, 127.66, 126.70, 125.95, 125.33, 124.40, 123.56, 123.41, 122.88, 121.29, 84.32, 25.08. MS (ESI), m/z: 496.12, calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{2}$ : 496.23. HRMS (ESI), m/z: [M $\left.{ }^{+}\right] 497.2383$, calcd for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{2}$ : 497.2401. Elemental analyses for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{2}$ : C, 79.84; H, 5.89; N, 5.64. Found: C, $79.70 ; \mathrm{H}, 6.04 ; \mathrm{N}, 5.86$. [CCDC 1948485]

## 3. Figures and Tables



Chem. Sci., 2015, 6, 3236-3241
$\mathrm{SC}_{\mathrm{g}}: \lambda_{\mathrm{em}}=498 \mathrm{~nm}$, PLQY $=52 \%, \lambda_{\mathrm{ML}}=517 \mathrm{~nm}$
P2(1), Monoclinic, Noncentrosymmetric
$\mathrm{SC}_{\mathrm{b}}: \lambda_{\mathrm{em}}=476 \mathrm{~nm}$, PLQY $=36 \%$
P2(1), Monoclinic, Noncentrosymmetric


Mater. Horiz., 2016, 3, 220-225
$C_{\mathrm{p}}: \lambda_{\mathrm{em}}=429 \mathrm{~nm}, \mathrm{PLQY}=69.9 \%, \lambda_{\mathrm{ML}}=460 \mathrm{~nm}$
P21(c), Monoclinic, Centrosymmetric
$C_{c}: \lambda_{\text {em }}=420 \mathrm{~nm}$, PLQY $=67.4 \%$
C2, Monoclinic, Noncentrosymmetric

tPE-5-MeTh
Mater. Chem. Front., 2019,3, 32-38
$\mathrm{P} 1: \lambda_{\mathrm{em}}=440 \mathrm{~nm}, \mathrm{PLQY}=33.3 \%, \lambda_{\mathrm{ML}}=453 \mathrm{~nm}$
P1, Triclinic, Noncentrosymmetric
$\mathrm{P} 2: \lambda_{\mathrm{em}}=473 \mathrm{~nm}, \mathrm{PLQY}=25.5 \%$,
P212121, Orthorhombic, Centrosymmetric

Chart S1. Molecular structures of previously reported ML-active polymorphs.


Fig. S1 (a) UV and PL spectra of tPTI-Bpin and PTI-Bpin in THF solution. ( $\mathrm{c}=10^{-5} \mathrm{M}$ ) (b) Fluorescence decay of tPTI-Bpin and PTI-Bpin in different states.


Fig. S2 The TGA (Thermogravimetric Analysis) curves of PTI-Bpin and tPTI-Bpin.


Fig. S3 Crystal molecular packing of tPTI-B1, tPTI-B2 and PTI-B.

tPTI-B1

tPTI-B2

PTI-B

Fig. S4 Single molecule conformations of tPTI-B1, tPTI-B2 and PTI-B in the crystals.

Table S1. Summarization of the torsion angles and intramolecular interactions in single molecules of tPTI-B1, tPTI-B2 and PTI-B.

|  | Torsion angle 1 | Torsion angle 2 | C-H... $\pi$ <br> interaction 1 | C-H... $\pi$ <br> interaction 2 |
| :---: | :---: | :---: | :---: | :---: |
| tPTI-B1 | $29.097^{\circ}$ | $108.007^{\circ}$ | $3.042 \AA$ | $2.714 \AA$ |
| tPTI-B2 | $27.312^{\circ}$ | $101.913^{\circ}$ | $2.653 \AA$ | $3.105 \AA$ |
| PTI-B | $17.794^{\circ}$ | $103.991^{\circ}$ | $2.792 \AA$ | $2.863 \AA$ |

Table S2. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B1.

| Dimer-1 | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(4) |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | C-H... $\pi$ | 3.593 | 2 |
|  | 2 | C-H... $\pi$ | 3.633 | 2 |
|  | Orientati | Interaction | d/ $\AA^{\text {a }}$ | Number(8) |
|  | 1 | C-H...O | 2.663 | 2 |
|  | 2 | C-H...O | 3.029 | 2 |
|  | 3 | C-H...O | 3.709 | 2 |
|  | 4 | C-H...O | 3.987 | 2 |
| Dimer -2 | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(7) |
|  | 1 | C-H... $\pi$ | 2.693 | 1 |
|  | 2 | C-H... $\pi$ | 3.312 | 1 |
|  | 3 | C-H... $\pi$ | 3.420 | 1 |
|  | 4 | C-H... $\pi$ | 3.425 | 1 |
|  | 5 | C-H... $\pi$ | 3.533 | 1 |
|  | 6 | C-H... $\pi$ | 3.780 | 1 |
|  | 7 | C-H... $\pi$ | 3.971 | 1 |
|  | Orientati | Interaction | $\mathrm{d} / \AA^{\text {a }}$ | Number(7) |
|  | 1 | C-H...N | 2.746 | 1 |
|  | 2 | C-H...N | 2.916 | 1 |
|  | 3 | C-H...N | 2.979 | 1 |
|  | 4 | C-H...N | 3.543 | 1 |
|  | 5 | C-H...N | 3.594 | 1 |
|  | 6 | C-H...N | 3.623 | 1 |
|  | 7 | C-H...N | 3.975 | 1 |
| Dimer - 3 | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(11) |
|  | 1 | C-H... $\pi$ | 3.136 | 1 |
|  | 2 | C-H... $\pi$ | 3.300 | 1 |
|  | 3 | C-H... $\pi$ | 3.394 | 1 |
|  | 4 | C-H... $\pi$ | 3.404 | 1 |
|  | 5 | C-H... $\pi$ | 3.445 | 1 |
|  | 6 | C-H... $\pi$ | 3.502 | 1 |
|  | 7 | C-H... $\pi$ | 3.525 | 1 |
|  | 8 | C-H... $\pi$ | 3.539 | 1 |
|  | 9 | C-H... $\pi$ | 3.802 | 1 |
|  | 10 | C-H... $\pi$ | 3.839 | 1 |
|  | 11 | C-H... $\pi$ | 3.932 | 1 |
|  | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(4) |
|  | 1 | C-H...N | 3.207 | 1 |
|  | 2 | C-H...N | 3.451 | 1 |
|  | 3 | C-H...N | 3.818 | 1 |
|  | 4 | C-H...N | 3.900 | 1 |

Table S3. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B2.

| Dimer-1 | Orientation of Interaction | $\mathrm{d} / \AA^{\text {a }}$ | Number(16) |
| :---: | :---: | :---: | :---: |
|  | 1 C-H... $\pi$ | 2.686 | 1 |
|  | $2 \mathrm{C}-\mathrm{H} . . . \pi$ | 2.699 | 1 |
|  | 3 C-H... $\pi$ | 2.998 | 2 |
|  | $4 \mathrm{C}-\mathrm{H} \ldots \pi$ | 3.284 | 2 |
|  | 5 C-H... $\pi$ | 3.510 | 2 |
|  | 6 C-H... $\pi$ | 3.770 | 2 |
|  | 7 C-H... $\pi$ | 3.863 | 1 |
|  | 8 C-H... $\pi$ | 3.879 | 1 |
|  | 9 C-H... $\pi$ | 3.903 | 2 |
|  | 10 C-H... $\pi$ | 3.996 | 2 |
|  | Orientation of Interaction | $\mathrm{d} / \AA^{\text {a }}$ | Number(10) |
|  | 1 C-H...N | 3.326 | 2 |
|  | $2 \mathrm{C}-\mathrm{H} . . . \mathrm{N}$ | 3.417 | 2 |
|  | 3 C-H...N | 3.560 | 2 |
|  | $4 \mathrm{C}-\mathrm{H} . . . \mathrm{N}$ | 3.649 | 2 |
|  | 5 C-H...N | 3.692 | 2 |
| Dimer-2 | Orientation of Interaction | $\mathrm{d} / \AA^{\text {a }}$ | Number(18) |
|  | 1 C-H... $\pi$ | 2.925 | 1 |
|  | $2 \mathrm{C}-\mathrm{H} . . . \pi$ | 2.944 | 1 |
|  | 3 C-H... $\pi$ | 3.157 | 2 |
|  | 4 C-H... $\pi$ | 3.175 | 2 |
|  | 5 C-H... $\pi$ | 3.228 | 1 |
|  | 6 C-H... $\pi$ | 3.264 | 1 |
|  | 7 C-H... $\pi$ | 3.311 | 2 |
|  | 8 C-H... $\pi$ | 3.441 | 2 |
|  | $9 \mathrm{C}-\mathrm{H} . . . \pi$ | 3.656 | 2 |
|  | 10 C-H... $\pi$ | 3.822 | 2 |
|  | 11 С-Н... $\pi$ | 3.953 | 2 |
|  | Orientation of Interaction | $\mathrm{d} / \AA^{\text {a }}$ | Number(2) |
|  | 1 C-H...N | 3.359 | 2 |

Table S4. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of PTI-B.

| Dimer-1 | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(2) |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\pi \ldots \pi$ | 3.793 | 2 |
|  | Orientat | nteraction | $\mathrm{d} / \AA^{\text {a }}$ | Number(12) |
|  | 1 | C-H... $\pi$ | 3.206 | 2 |
|  | 2 | C-H... $\pi$ | 3.434 | 2 |
|  | 3 | C-H... $\pi$ | 3.504 | 2 |
|  | 4 | C-H... $\pi$ | 3.576 | 2 |
|  | 5 | C-H... $\pi$ | 3.703 | 2 |
|  | 6 | C-H... $\pi$ | 3.817 | 2 |
|  | Orientation | nteraction | $\mathrm{d} / \AA^{\text {a }}$ | Number(4) |
|  | 1 | C-H...O | 3.190 | 2 |
|  | 2 | C-H...O | 3.253 | 2 |
|  | Orientat | nteraction | $\mathrm{d} / \AA^{\text {a }}$ | Number(4) |
|  | 1 | C-H...N | 2.556 | 2 |
|  | 2 | C-H...N | 3.722 | 2 |
| Dimer-2 | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(6) |
|  | 1 C-H... $\pi$ |  | 3.285 | 2 |
|  | 2 | C-H... $\pi$ | 3.691 | 2 |
|  | 3 | C-H... $\pi$ | 3.704 | 2 |
|  | Orientation of Interaction |  | $\mathrm{d} / \AA^{\text {a }}$ | Number(4) |
|  | 1 | C-H...O | 3.012 | 2 |
|  | 2 | C-H...O | 3.709 | 2 |
|  | Orientat | nteraction | $\mathrm{d} / \AA^{\text {a }}$ | Number(8) |
|  | 1 | C-H...N | 2.750 | 2 |
|  | 2 | C-H...N | 3.070 | 2 |
|  | 3 | C-H...N | 3.093 | 2 |
|  | 4 | C-H...N | 3.615 | 2 |

Table S5. Structure data of crystals tPTI-B1, tPTI-B2 and PTI-B.

| Name | tPTI-B1 | tPTI-B2 | PTI-B |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$ | $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{BN}_{2} \mathrm{O}_{2}$ | $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{2}$ |
| Wavelength $(\AA)$ | 0.71073 | 0.71073 | 1.54184 |
| Crystal system | monoclinic | triclinic | monoclinic |
| Space group | $P 2_{1} / c(14)$ | $P-1(2)$ | $C 2 / c(15)$ |
|  | $\alpha=90$ | $\alpha=77.44(0)$ | $\alpha=90$ |
| Unit cell angles $\left({ }^{\circ}\right)$ | $\beta=102.12(1)$ | $\beta=89.44(0)$ | $\beta=104.84(0)$ |
|  | $\gamma=90$ | $\gamma=80.78(0)$ | $\gamma=90$ |
|  | $\mathrm{a}=12.265(4)$ | $\mathrm{a}=10.253(19)$ | $\mathrm{a}=28.078(7)$ |
| Unit cell length $(\AA)$ | $\mathrm{b}=9.760(3)$ | $\mathrm{b}=10.807(2)$ | $\mathrm{b}=9.992(2)$ |
|  | $\mathrm{c}=26.828(9)$ | $\mathrm{c}=14.406(3)$ | $\mathrm{c}=20.671(4)$ |
| Unit cell volume $\left(\AA^{3}\right)$ | $3139.91(441)$ | $1537.39(141)$ | $5606.41(298)$ |
| Z | 4 | 2 | 8 |
| Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.168 | 1.193 | 1.214 |
| $\mathrm{~F}(000)$ | 1176.0 | 588.0 | 2160.0 |
| CCDC number | 1948492 | 1948484 | 1948485 |

## 4. Structure Information



Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum of tPTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.


Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of tPTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.


Fig. $\mathbf{S} 7{ }^{1} \mathrm{H}$ NMR spectrum of PTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.


Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of tPTI-Bpin conducted in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.


Fig. S9 ${ }^{1} \mathrm{H}$ NMR spectrum of tPTI-Br conducted in $\mathrm{CDCl}_{3}$.


Fig. $\mathbf{S 1 0}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PTI}-\mathrm{Br}$ conducted in $\mathrm{CDCl}_{3}$.

## Compound Spectrum SmartFormula Report

Analysis Info
Analysis Name D:IDatalother groups\lizhenlYY-1_RA1_01_19900.d
Method
Sample Name
Comment

MS_no column_pos_std.m
MS-1

Acquisition Parameter

| Acquisition |  |  |  |  | Sarameter |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Source Type | ESI | Ion Polarity | Positive | Set Nebulizer | 2.0 Bar |
| Focus | Not active | Set Capillary | 4500 V | Set Dry Heater | $200{ }^{\circ} \mathrm{C}$ |
| Scan Begin | $50 \mathrm{~m} / \mathrm{z}$ | Set End Plate Offset | -500 V | Set Dry Gas | $8.0 / / \mathrm{min}$ |
| Scan End | $1500 \mathrm{~m} / \mathrm{z}$ | Set Charging Voltage | 2000 V | Set Divert Valve | Waste |
|  |  | Set Corona | 0 nA | Set APCI Heater | $0^{\circ} \mathrm{C}$ |

+MS, $0.3 \mathrm{~min} \# 17$


YY-1_RA1_01_19900.d
Bruker Compass DataAnalysis 4.3 printed: 10/7/2019 7:19:34 PM by: BDAL@DE Page 1 of 1

Fig. S11 HRMS spectrum of tPTI-Bpin.

## Compound Spectrum SmartFormula Report

Analysis Info

Method
Sample Name
Comment

Analysis Name D:IDatalother groups\izhenlYY-2_RA2_01_19901.d
MS_no column_pos_std.m
YY-2

Acquisition Date 10/5/2019 3:34:27 PM
Operator BDAL@DE Instrument compact compact

| Set Nebulizer | 2.0 Bar |
| :--- | :--- |
| Set Dry Heater | $200{ }^{\circ} \mathrm{C}$ |
| Set Dry Gas | $8.0 \mathrm{I} / \mathrm{min}$ |
| Set Divert Valve | Waste |
| Set APCI Heater | $0^{\circ} \mathrm{C}$ |

+MS, 0.3-0.4min \#14-21


| Meas. $\mathrm{m} / \mathrm{z}$ | \# | lon Formula | Score | $\mathrm{m} / \mathrm{z}$ | err [mDa] | err [ppm] | mSigma | rdb | e $^{-}$Conf | N-Rule | Adduct |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. S12 HRMS spectrum of PTI-Bpin.

