Electronic Supplementary Information

Table of Contents

1. General experimental procedures

Characterization

2. Synthesis

Scheme S1. The synthetic route of tPTI-Bpin and PTI-Bpin.

3. Figures and Tables

Chart S1. Molecular structures of previously reported ML-active polymorphs.

Fig. S1 (a) UV and PL spectra of tPTI-Bpin and PTI-Bpin in THF solution. (b) Fluorescence decay of tPTI-Bpin and PTI-Bpin in different states.

Fig. S2 The TGA (Thermogravimetric Analysis) curves of PTI-Bpin and tPTI-Bpin.

Fig. S3 Crystal molecular packing of tPTI-B1, tPTI-B2 and PTI-B.

Fig. S4 Single molecule conformations of tPTI-B1, tPTI-B2 and PTI-B in the crystals.

Table S1. Summarization of the torsion angles and intramolecular interactions in single molecules of tPTI-B1, tPTI-B2 and PTI-B.

Table S2. Summarization of intermolecular interactions in different molecular dimers derived fromthe unit cell of tPTI-B1.

Table S3. Summarization of intermolecular interactions in different molecular dimers derived fromthe unit cell of tPTI-B2.

Table S4. Summarization of intermolecular interactions in different molecular dimers derived fromthe unit cell of PTI-B.

 Table S5. Structure data of crystals tPTI-B1, tPTI-B2 and PTI-B.

4. Structure Information

Fig. S5 ¹H NMR spectrum of tPTI-Bpin conducted in CD₂Cl₂.

Fig. S6 ¹³C NMR spectrum of tPTI-Bpin conducted in CD₂Cl₂.

Fig. S7 1 H NMR spectrum of PTI-Bpin conducted in CD₂Cl₂.

Fig. S8 ¹³C NMR spectrum of PTI-Bpin conducted in CD₂Cl₂.

Fig. S9 ¹H NMR spectrum of tPTI-Br conducted in CDCl₃.

Fig. S10 ¹H NMR spectrum of PTI-Br conducted in CDCl₃.

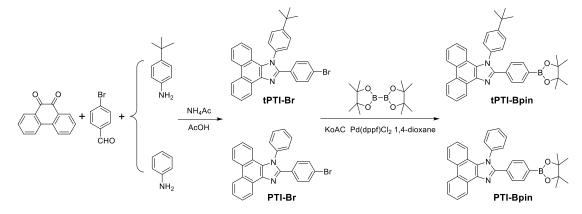

Fig. S11 HRMS spectrum of tPTI-Bpin.

Fig. S12 HRMS spectrum of PTI-Bpin.

1. General experimental procedures

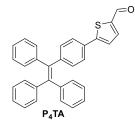
Characterization: ¹H and ¹³C NMR spectra were recorded on a 400 MHz Varian Mercury, using CD₂Cl₂ or THF-d₈ as the solvent. High-resolution mass spectra were measured on an LTQ-Orbitrap Elite high-resolution mass spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ionization (ESI) source and a Dionex Ultimate 3000 UPLC system (Thermo-Fisher Scientific, Waltham, MA, USA). Mass spectra were measured on a ZAB 3F-HF mass spectrophotometer. Elemental analyses of carbon, hydrogen and nitrogen were performed on a Perkin-Elmer microanalyzer. PL spectra were recorded by a Hitachi F-4600 fluorescence spectrophotometer. The ML spectra were measured on a spectrometer of Acton SP2750 with CCD (SPEC-10, Princeton) as a power detector. Absolute photoluminescence quantum yield (PLQY) and fluorescence decay were recorded by an Edinburgh FLS980 spectrometer. The powder X-ray diffraction patterns were measured on Rigaku MiniFlex 600 at 25 °C at 40 KV and 40 mA at a scan rate of 10° (20)/min (scan range: 5-60°). The single-crystal X-ray diffraction data were recorded by a Bruker Smart Apex II CCD diffractometer. The CCDC numbers of tPTI-B1, tPTI-B2 and PTI-B are 1948492, 1948484 and 1948485 respectively. Thermogravimetric analysis were carried out on TG 209 F1 of Thermogravimetric Analyzer under nitrogen at heating rate of 10°C min⁻¹. Differential scanning calorimetry were performed on NETZSCHDSC 200 PC instrument from room temperature to 250 °C at a heating rate of 10 °C/min under nitrogen. The Gaussian 09 program was utilized to perform the TD-DFT calculations. The ground state (S₀) geometry was obtained from the single crystal structure and no further geometry optimization was conducted in order to maintain the specific molecular configuration and corresponding intermolecular locations.

2. Synthesis

Scheme S1. The synthetic routes of tPTI-Bpin and PTI-Bpin.

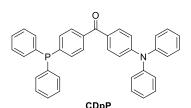
tPTT-Br: To a round-bottom flask fitted with a reflux condenser, was added 9,10-phenanthrenedione (4.17 g, 20 mmol), 4-bromobenzaldehyde (1.90 g, 10 mmol), 4-tert-butylaniline (1.60 mL, 10 mmol), ammonium acetate (4.63 g, 60 mmol) and acetic acid (50 mL). The resultant solution was stirred under nitrogen atmosphere at refluxing temperature for 4 h. After the reaction completed, the mixture was cooled to room temperature and quenched with a large amount of water, after stirring for 30 mins, the

mixture was filtered and washed with a small amount of methanol to afford a crude product. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane = 1/3) to give the pure compound of tPTI-Br as a light yellow solid (4.06 g, 81%). ¹H NMR (400 MHz, CDCl₃, δ): 8.85-8.83 (d, *J* = 8 Hz 1H, Ar-H), 8.77-8.75 (d, *J* = 8 Hz, 1H, Ar-H), 8.71-8.69 (d, *J* = 8 Hz, 1H, Ar-H), 7.76-7.72 (m, 1H, Ar-H), 7.67-7.60 (m, 3H, Ar-H), 7.53-7.49 (m, 1H, Ar-H), 7.47-7.40 (m, 6H, Ar-H), 7.28-7.24 (m, 1H, Ar-H), 7.19-7.17 (d, *J* = 8 Hz, 1H, Ar-H), 1.45 (s, 9H, -tBu). MS (ESI), m/z: 504.01, calcd for C₂₀H₁₈NO₂Br: 504.12.

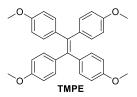

PTT-Br: To a round-bottom flask fitted with a reflux condenser, was added 9,10-phenanthrenedione (4.17 g, 20 mmol), 4-bromobenzaldehyde (1.90 g, 10 mmol), aniline (0.91 mL, 10 mmol), ammonium acetate (4.63 g, 60 mmol) and acetic acid (50 mL). The resultant solution was stirred under nitrogen atmosphere at refluxing temperature for 4 h. After the reaction completed, the mixture was cooled to room temperature and quenched with a large amount of water, after stirring for 30 mins, the mixture was filtered and washed with a small amount of methanol to afford a crude product. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane = 1/3) to give the pure compound of PTI-Br as a light yellow solid (3.51 g, 78%). ¹H NMR (400 MHz, CDCl₃, δ): 8.85-8.84 (d, *J* = 4 Hz 1H, Ar-H), 8.78-8.76 (d, *J* = 8 Hz, 1H, Ar-H), 8.71-8.70 (d, *J* = 4 Hz, 1H, Ar-H), 7.75-7.73 (m, 1H, Ar-H), 7.67-7.61 (m, 4H, Ar-H), 7.53-7.50 (m, 3H, Ar-H), 7.46-7.41 (m, 4H, Ar-H), 7.27-7.26 (m, 1H, Ar-H), 7.18-7.16 (d, *J* = 8 Hz, 1H, Ar-H). MS (ESI), m/z: 447.95, calcd for C₂₀H₁₈NO₂Br: 448.06.

tPTT-Bpin: tPTI-Br (4.50 g, 9 mmol), bis(pinacolato)diboron (3.93 g, 13.5 mmol), potassium acetate (3.10 g, 31.5 mmol), and Pd(dppf)₂Cl₂ (0.33 g, 0.45 mmol) in anaerobic 1,4-dioxane (80 mL) were refluxed under nitrogen for 12 h. After the reaction completed, the mixture was cooled to room temperature and then water (100 mL) was added, and extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane = 1/4) to give the pure compound of tPTI-Bpin as a white solid (1.91 g, 39%). ¹H NMR (400 MHz, CD₂Cl₂, δ): 8.85-8.83 (d, *J* = 8 Hz 1H, Ar-H), 8.78-8.76 (d, *J* = 8 Hz, 1H, Ar-H), 8.73-8.71 (d, *J* = 8 Hz, 1H, Ar-H), 7.78-7.71 (m, 3H, Ar-H), 7.69-7.63 (m, 5H, Ar-H), 7.53-7.49 (m, 1H, Ar-H), 7.46-7.44 (d, *J* = 8 Hz, 2H, Ar-H), 7.30-7.27 (m, 1H, Ar-H), 7.22-7.20 (d, *J* = 8 Hz, 1H, Ar-H), 1.47 (s, 9H, -tBu), 1.35 (s, 12H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, δ): 153.87, 150.88, 137.69, 136.32, 134.68, 133.58, 129.47, 128.88, 128.80, 128.73, 128.54, 127.68, 127.65, 127.48, 126.68, 125.90, 125.28, 124.36, 123.55, 122.86, 121.38, 84.33, 35.30, 31.53, 25.07. MS (ESI), m/z: 552.17, calcd for C₃₇H₃₇BN₂O₂: 552.29. HRMS (ESI), m/z: [M⁺] 553.3006, calcd for C₃₇H₃₇BN₂O₂: 553.3027. Elemental analyses for C₃₇H₃₇BN₂O₂: C, 80.43; H, 6.75; N, 5.07. Found: C, 79.95; H, 6.98; N, 4.98. [CCDC 1948492, 1948484]

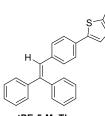
PTT-Bpin: PTI-Br (5.40 g, 12 mmol), bis(pinacolato)diboron (3.66 g, 14.4 mmol), potassium acetate (4.10 g, 42 mmol), and Pd(dppf)₂Cl₂ (0.44 g, 0.60 mmol) in anaerobic 1,4-dioxane (100 mL) were


refluxed under nitrogen for 12 h. After the reaction completed, the mixture was cooled to room temperature and then water (150 mL) was added, and extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography (eluent:petroleum ether/dichloromethane = 1/4) to give the pure compound of tPTI-Bpin as a white solid (2.80 g, 47%). ¹H NMR (400 MHz, CD₂Cl₂, δ): 8.88-8.86 (d, *J* = 8 Hz 1H, Ar-H), 8.77-8.75 (d, *J* = 8 Hz, 1H, Ar-H), 8.72-8.70 (d, *J* = 8 Hz, 1H, Ar-H), 7.77-7.74 (m, 3H, Ar-H), 7.66-7.60 (m, 6H, Ar-H), 7.53-7.51 (m, 3H, Ar-H), 7.28-7.24 (m, 2H, Ar-H), 1.36 (s,12H, -CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, δ): 150.94, 139.08, 137.77, 134.69, 133.48, 130.51, 130.20, 129.48, 129.45, 128.85, 128.72, 128.56, 127.67, 127.66, 126.70, 125.95, 125.33, 124.40, 123.56, 123.41, 122.88, 121.29, 84.32, 25.08. MS (ESI), m/z: 496.12, calcd for C₃₃H₂₉BN₂O₂: 496.23. HRMS (ESI), m/z: [M⁺] 497.2383, calcd for C₃₃H₂₉BN₂O₂: 497.2401. Elemental analyses for C₃₃H₂₉BN₂O₂: C, 79.84; H, 5.89; N, 5.64. Found: C, 79.70; H, 6.04; N, 5.86. [CCDC 1948485]

3. Figures and Tables

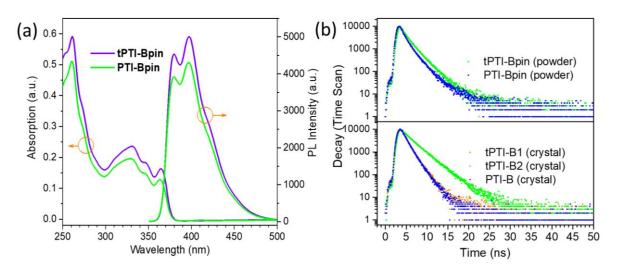

Chem. Sci., 2015, 6, 3236-3241

- SC_g : λ_{em} = 498 nm, PLQY = 52%, λ_{ML} = 517 nm P2(1), Monoclinic, Noncentrosymmetric
- SC_b : λ_{em} = 476 nm, PLQY = 36% P2(1), Monoclinic, Noncentrosymmetric


Chem. Sci., 2018, 9, 5787-5794

- CDpP-B: λ_{em} = 473 nm, PLQY = 31%, λ_{ML} = 473 nm P21/n, Monoclinic, Centrosymmetric
- CDpP-G: λ_{em} = 504 nm, PLQY = 26%, λ_{ML} = 504 nm *Cc*, Monoclinic, Noncentrosymmetric

Mater. Horiz., 2016, 3, 220-225


- C_p: λ_{em} = 429 nm, PLQY = 69.9%, λ_{ML} = 460 nm P21(c), Monoclinic, Centrosymmetric
- C_c: λ_{em} = 420 nm, PLQY = 67.4% C2, Monoclinic, Noncentrosymmetric

tPE-5-MeTh Mater. Chem. Front., 2019,3, 32-38

- P1: λ_{em} = 440 nm, PLQY = 33.3%, λ_{ML} = 453 nm P1, Triclinic, Noncentrosymmetric
- P2: λ_{em} = 473 nm, PLQY = 25.5%, P212121, Orthorhombic, Centrosymmetric

Fig. S1 (a) UV and PL spectra of tPTI-Bpin and PTI-Bpin in THF solution. ($c = 10^{-5}$ M) (b) Fluorescence decay of tPTI-Bpin and PTI-Bpin in different states.

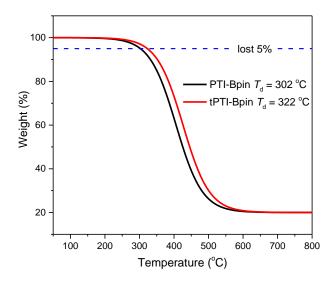
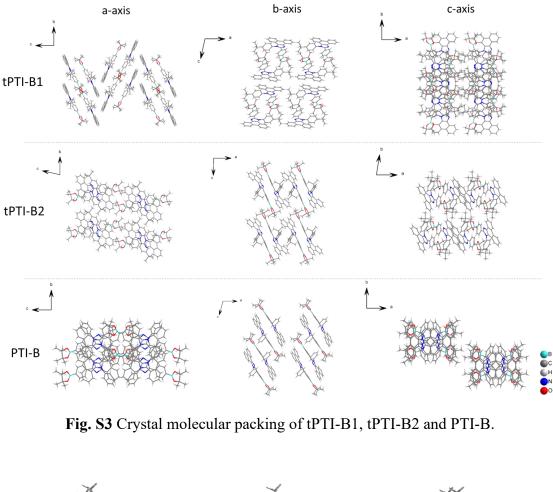



Fig. S2 The TGA (Thermogravimetric Analysis) curves of PTI-Bpin and tPTI-Bpin.

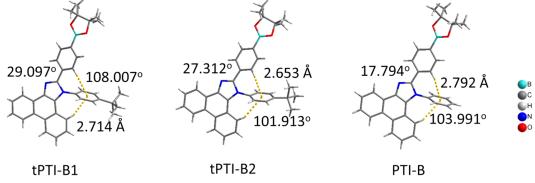


Fig. S4 Single molecule conformations of tPTI-B1, tPTI-B2 and PTI-B in the crystals.

Table S1. Summarization of the torsion angles and intramolecular interactions in single molecules of tPTI-B1, tPTI-B2 and PTI-B.

	Tansian angla 1	Taurian angle 2	С-Нπ	С-Нπ
	Torsion angle 1	Torsion angle 2	interaction 1	interaction 2
tPTI-B1	29.097°	108.007°	3.042 Å	2.714 Å
tPTI-B2	27.312°	101.913°	2.653 Å	3.105 Å
PTI-B	17.794°	103.991°	2.792 Å	2.863 Å

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimer-1	Orientation	of Interaction	d /Å a	Number(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dimer -2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dimer -3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	С-Нπ		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			С-Нπ		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	С-Нπ	3.404	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	С-Нπ	3.502	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9			1
11C-H π 3.9321Orientation of Interactiond /Å aNumber(4)1C-HN3.2071		10	С-Нπ		1
Orientation of Interactiond /Å aNumber(4)1C-HN3.2071		11	C-Hπ		1
		Orientation	of Interaction	d /Å a	Number(4)
		1	C-HN	3.207	1
		2	C-HN	3.451	1
3 C-HN 3.818 1					1
4 C-HN 3.900 1		4	C-HN		1

Table S2. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B1.

Dimer-1	Orientation of	of Interaction	d /Å a	Number(16)
	1 C-Hπ		2.686	1
	2	С-Нπ	2.699	1
	3	С-Нπ	2.998	2
	4	С-Нπ	3.284	2
	5	С-Нπ	3.510	2
	6	С-Нπ	3.770	2
	7	С-Нπ	3.863	1
	8	С-Нπ	3.879	1
	9	C-Hπ	3.903	2
	10	С-Нπ	3.996	2
	Orientation	of Interaction	d /Å a	Number(10)
	1	C-HN	3.326	2
	2	C-HN	3.417	2
	3	C-HN	3.560	2
	4	C-HN	3.649	2
	5	C-HN	3.692	2
Dimer-2	Orientation of Interaction		d /Å a	Number(18)
	1	С-Нπ	2.925	1
	2	С-Нπ	2.944	1
	3	С-Нπ	3.157	2
	4	С-Нπ	3.175	2
	5	С-Нπ	3.228	1
	6	С-Нπ	3.264	1
	7	С-Нπ	3.311	2
	8	С-Нπ	3.441	2
	9 C-Hπ		3.656	2
	10	С-Нπ	3.822	2
	11	С-Нπ	3.953	2
	Orientation of Interaction 1 C-HN		d /Å a	Number(2)
			3.359	2

Table S3. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of tPTI-B2.

Dimer-1	Orientation	of Interaction	d /Å a	Number(2)
	1	ππ	3.793	2
	Orientation	Orientation of Interaction		Number(12
	1	С-Нπ	3.206	2
	2	С-Нπ	3.434	2
	3	С-Нπ	3.504	2
	4	С-Нπ	3.576	2
	5	С-Нπ	3.703	2
	6	С-Нπ	3.817	2
	Orientation	of Interaction	d /Å a	Number(4)
	1	С-НО	3.190	2
	2	С-НО	3.253	2
	Orientation	of Interaction	d /Å a	Number(4)
	1	C-HN	2.556	2
	2	C-HN	3.722	2
Dimer-2	Orientation	Orientation of Interaction		Number(6)
	1	С-Нπ	3.285	2
	2	С-Нπ	3.691	2
	3	С-Нπ	3.704	2
	Orientation of Interaction		d /Å a	Number(4)
	1	С-НО	3.012	2
	2	С-НО	3.709	2
	Orientation	Orientation of Interaction		Number(8)
	1	C-HN	2.750	2
	2	C-HN	3.070	2
	3	C-HN	3.093	2
	4	C-HN	3.615	2

Table S4. Summarization of intermolecular interactions in different molecular dimers derived from the unit cell of PTI-B.

	-		
Name	tPTI-B1	tPTI-B2	PTI-B
Empirical formula	C37H37BN2O2	C37H37BN2O2	C33H29BN2O2
Wavelength (Å)	0.71073	0.71073	1.54184
Crystal system	monoclinic	triclinic	monoclinic
Space group	$P2_{1}/c$ (14)	<i>P</i> -1 (2)	<i>C</i> 2/ <i>c</i> (15)
	$\alpha = 90$	$\alpha = 77.44(0)$	$\alpha = 90$
Unit cell angles (°)	$\beta = 102.12(1)$	$\beta = 89.44(0)$	$\beta = 104.84(0)$
	$\gamma = 90$	$\gamma = 80.78(0)$	$\gamma = 90$
	a = 12.265(4)	a = 10.253(19)	a = 28.078(7)
Unit cell length (Å)	b = 9.760(3)	b = 10.807(2)	b = 9.992(2)
	c = 26.828(9)	c = 14.406(3)	c = 20.671(4)
Unit cell volume (Å ³)	3139.91(441)	1537.39(141)	5606.41(298)
Ζ	4	2	8
Density (g/cm ³)	1.168	1.193	1.214
F(000)	1176.0	588.0	2160.0
CCDC number	1948492	1948484	1948485

Table S5. Structure data of crystals tPTI-B1, tPTI-B2 and PTI-B.

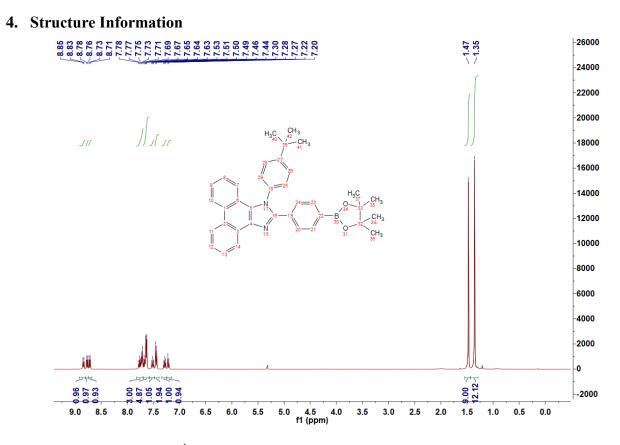


Fig. S5 ¹H NMR spectrum of tPTI-Bpin conducted in CD₂Cl₂.

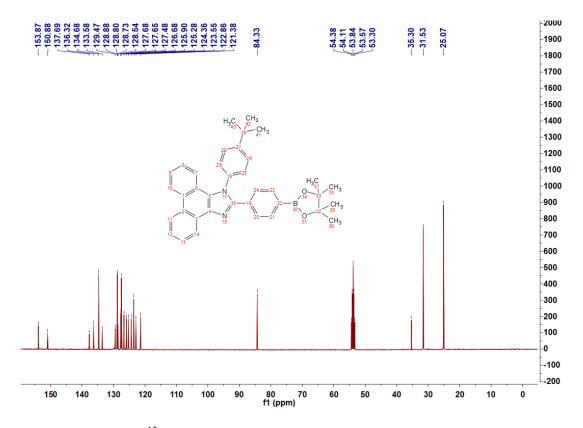
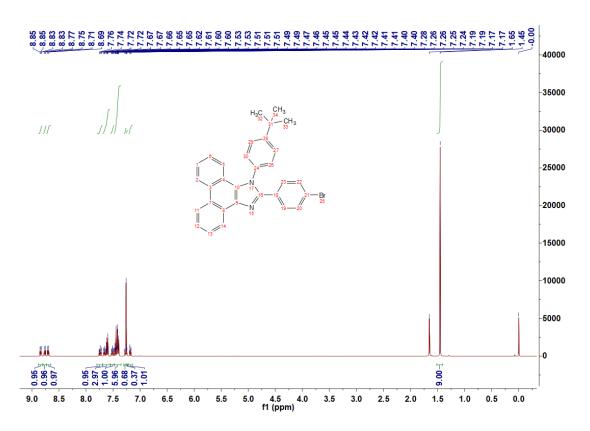
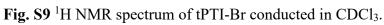




Fig. S6 ¹³C NMR spectrum of tPTI-Bpin conducted in CD₂Cl₂.

Fig. S8 ¹³C NMR spectrum of tPTI-Bpin conducted in CD₂Cl₂.

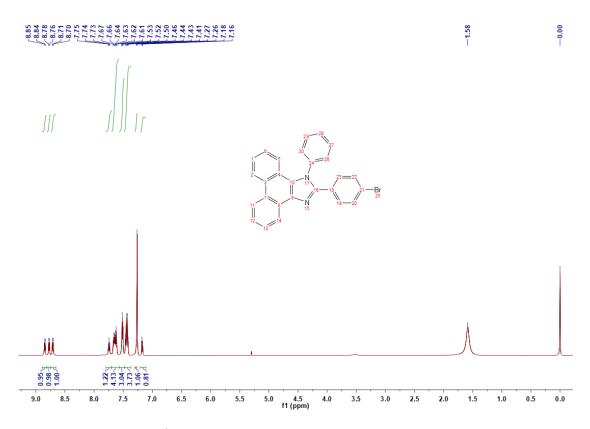


Fig. S10 ¹H NMR spectrum of PTI-Br conducted in CDCl₃.

Analysis Info		ound Spectrum				
Analysis Info			Acquisition I	Date 10/5/201	19 3:31:10 PM	
Analysis Name	lame D:\Data\other groups\lizhen\YY-1_RA1_01_19900.d					
Method	MS no column pos std.m			Operator	BDAL@DE	
Sample Name	YY-1			Instrument	compact	8255754,20129
Comment						
Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Se	et Nebulizer	2.0 Bar
Focus	Not active	Set Capillary	4500 V	Se	et Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Se	et Dry Gas	8.0 l/min
Scan End	1500 m/z	Set Charging Voltage	2000 V	Se	et Divert Valve	Waste
		Set Corona	0 nA	Se	et APCI Heater	0°C

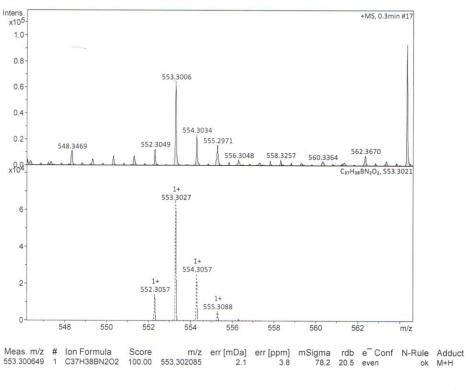


Fig. S11 HRMS spectrum of tPTI-Bpin.

	Comp	ound Spectrum	SmartF	ormula Report	
Analysis Info				Acquisition Date 10/5/2	2019 3:34:27 PM
Analysis Name	D:\Data\other grou	ips\lizhen\YY-2 RA2 01 19	901.d		
Method	thod MS_no column_pos_std.m			Operator BDAL@DE	
Sample Name	YY-2			Instrument compact	8255754.20129
Comment					
Acquisition Par	ameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	2.0 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	8.0 l/min
Scan End	1500 m/z	Set Charging Voltage Set Corona	2000 V	Set Divert Valve Set APCI Heater	
		Set Corona	0 nA	Set APCI Heater	0 °C

+MS, 0.3-0.4min #14-21

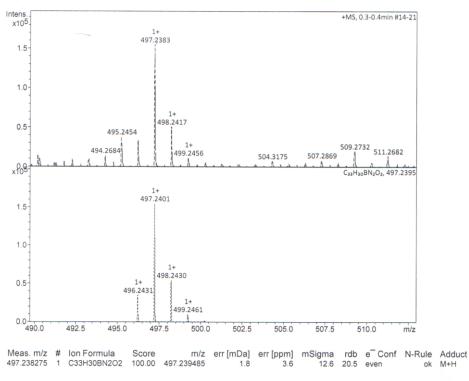


Fig. S12 HRMS spectrum of PTI-Bpin.