Electronic Supplementary Information (ESI)

Metal ion-induced chemiluminescence recovery for highly intensive

chemiluminescence bifunctionalized polydopamine nanospheres

Yating Liu[†], Wen Shen^{†,*} and Hua Cui^{†,*}

[†]CAS Key Laboratory of Soft Matter Chemistry, *i*ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

E-mail: hcui@ustc.edu.cn; shenwen@ustc.edu.cn

Table of Contents

1.	1. TEM images of PDA and Co ²⁺ -ABEI-PDA nanospheres				
2.	UV-visible absorption spectra of ABEI, PDA and Co ²⁺ -ABEI-PDA				
	nanospheres				
3.	FT-IR spectra of PDA and Co ²⁺ -ABEI-PDA nanospheresS5				
4.	. Effect of Co ²⁺ concentration, H ₂ O ₂ concentration and pH of H ₂ O ₂ on CL performance				
5.	Stability of Co ²⁺ -ABEI-PDA nanospheresS				
6.	Loading amount of Co ²⁺ and ABEI in Co ²⁺ -ABEI-PDA nanospheres and ABEI/Co ²⁺ -CaCO ₃ microspheres				

1. TEM images of PDA and Co²⁺-ABEI-PDA nanospheres

Figure S1. TEM images of (a) PDA nanospheres; (b) Co^{2+} -ABEI-PDA nanospheres, wherein the pH of ABEI solution is 13.0.

2. UV-visible absorption spectra of ABEI, PDA and Co²⁺-ABEI-PDA nanospheres

Figure S2. UV-visible absorption spectra of ABEI (black curve), PDA nanospheres (blue curve), and Co²⁺-ABEI-PDA nanospheres (red curve).

3. FT-IR spectra of PDA and Co²⁺-ABEI-PDA nanospheres

Figure S3. FT-IR spectra of PDA nanospheres (blue curve) and Co²⁺-ABEI-PDA nanospheres (red curve).

4. Effect of Co^{2+} concentration, H_2O_2 concentration and pH of H_2O_2 on CL performance

Figure S4. (a) Effect of Co^{2+} concentration on CL emission. CL kinetic curves of Co^{2+} -ABEI-PDA nanospheres at different concentrations of Co^{2+} from $1.0x10^{-8}$ to $1.0x10^{-3}$ M with H_2O_2 ; (b) Optimization of H_2O_2 concentration. CL kinetic curves for reaction of Co^{2+} -ABEI-PDA nanospheres with different concentrations of H_2O_2 from $1.0x10^{-5}$ to $1.0x10^{-1}$ M; (c) The effect of pH of H_2O_2 detection solution on the CL intensity of Co^{2+} -ABEI-PDA nanospheres with H_2O_2 under different pH, wherein H_2O_2 are in B-R buffer (pH=9-11) or NaOH solution (pH=12.0, 13.0), respectively.

5. Stability of Co²⁺-ABEI-PDA nanospheres

Fig. S5 Stability of Co^{2+} -ABEI-PDA nanospheres. Daily CL measurements of Co^{2+} -ABEI-PDA nanospheres in 15 days.

6.	Supplementary Table 1	Loading amount of Co ²⁺ and ABEI in Co ²⁺ -ABEI-		
PDA nanospheres and ABEI/Co ²⁺ -CaCO ₃ microspheres.				

Material	Co ²⁺ concentration	ABEI concentration	Molar ratio of Co ²⁺ and ABEI
Co ²⁺ -ABEI-PDA	9.44 nM	122 nM	7.74×10^{-2} : 1
ABEI/Co ²⁺ -CaCO ₃	1.33 nM	2850 nM	4.67×10^{-4} : 1

Loading amounts of ABEI in Co^{2+} -ABEI-PDA nanospheres was determined by UV-vis analysis, and the amount of Co^{2+} was determined by ICP-AES elemental analysis. The ABEI concentration in the supernatant was determined by measuring the absorbance at 290 nm. The as-prepared Co^{2+} -ABEI-PDA nanospheres were purified by centrifugation for three times. The ABEI concentration in the first and second supernatant was 0.858 and 0.0198 mM, respectively, and was almost undetectable in the third time, indicating sufficient purification. Since the ABEI concentration of the start solution was 1 mM. Thus, the loading amount of ABEI in Co^{2+} -ABEI-PDA nanospheres was calculated to be around 0.122 mM. In addition, the ICP-AES elemental analysis confirmed the existence of Co, and the amount of Co^{2+} was determined to be 0.556 mg/mL.