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Material and Methods:

Experimental instruments

Fourier-transformed infrared (FT-IR) spectra were collected in ATR mode (4000 to 600 cm™!,
Bruker Vertex 70 FT-IR spectrometer). In-Situ Fourier-transformed infrared (FT-IR) spectra
were collected in pure solid mode (4000 to 600 cm™!, NICOLET, iS50 FT-IR spectrometer). The
'H NMR spectra were measured on a Bruker AV400 spectrometer. The ESI-MS data were
recorded with a PerkinElmer ELAN DRC-e LCMS system. Solid-State '3C CP/MAS NMR
spectra were measured by a WB 400 MHz Bruker Advance II spectrometer (contact time of 2
ms, ramp 100 and pulse delay of 3 s). The Brunauer-Emmett-Teller (BET) surface areas and pore
sizes were measured by a Micrometrics ASAP 2020 M surface area and porosity analyzer. Pore
size distributions were calculated based on a non-local density functional theory (NLDFT).
Elemental analysis (EA) were measured by a VarioMicrocube Elemental Analyser (Elementar,
Germany). Thermogravimetric analysis (TGA) was measured on an instrument (Perkin-Elmer
Pyrisl) at the rate of 10 °C/min under oxygen atmosphere up to 800 °C. Photophysical absorption
properties of resulting samples were measured by a UV-VIS-NIR spectrophotometer (UV-3600,
Shimadzu Japan). Powder X-ray diffraction (XRD) patterns were measured by a Philips X’ Pert
Pro X-ray diffraction instrument (Cu Ko radiation, A = 1.5418 A). Transmission electron
microscopy (TEM) images were observed by a Tecnai G2 F30 (FEI Holland) microscope.
Talosf200x (FEI Holland) of High-Resolution Field emission transmission electron microscope
(HR-FTEM) observed the sample of Por-CTF. Scanning electron microscopy (SEM) images of
resulting samples were measured by a FEI Sirion 200 microscope (FE-SEM). Layered
morphologies were observed by atomic force microscopy (scanning probe microscopy SPM-
9700 instrument, Shimadzu Japan). X-ray photoelectron spectroscopy (XPS) analysis were
measured by an Shimadzu Axis Ultra DLD 600 W instrument. The electron spin resonance
(ESR) analysis was conducted with an electron paramagnetic resonance A300-10/12
spectrometer (Bruker AXS Company, Germany). The excitation light employed in recording
fluorescence spectra was 362 nm. The photoluminescence (PL) spectra were obtained by a
QuantaMaster & TimeMaster Spectrofluorometer (QuantaMaster™40, USA). Raman spectra
were measured by a LabRAM HRS800 Laser Confocal Raman Spectrometer Raman (Horiba

JobinYvon, France). The apparent quantum efficiency (A. Q. E.) was measured under the same

photocatalytic reaction condition by different bandpass filter by the eauation below. The N,



means the number of reacted electrons in the system. The V» means the number of incident

electrons in the same condition. The Ve means the amount of evolved product under visible light

irradiation (4 > 420 nm),

Ne
A.Q.E (COY% = — x100%
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The selectivity of CO was calculated by the equation below. The N (umol) refers the envolved

product (CO) under visible light irradiation (4> 420 nm),

. 2N(CO)
Selectivity (CO)% = * 100%
2N(CO) + 2N(H,)

Time-resolved transient absorption spectroscopy measurement:

At ambient conditions, the femtosecond-transient absorption measurements were carried out on a
Helios pump-probe system (Ultrafast Systems LLC), which was combined with an amplified
femtosecond laser system (Coherent). In the measurement, optical parametric amplifier (TOPAS-
800-fs) supplied a 400 nm pump pulse (~20 nlJ/pulse at the sample, corresponding to a pump
fluence of ~168 uJ/cm? providing the typical focus radii of ~150 um)), which was generated by a
Ti: sapphire regenerative amplifier (Legend Elite-1K-HE; 800 nm), 35 fs, 7 mJ/pulse, 1 kHz) and
seeded with a mode-locked Ti: sapphire laser system (Micra 5) and an Nd: YLF laser (Evolutlon
30) pumped. The white-light continuum (WLC) probe pulses (420-760 nm) was produced by
focusing the 800 nm beams (split from the regenerative amplifier with a tiny portion, ~400
nJ/pulse) onto a sapphire plate. A reference beam split from WLC was used to correct the pulse-
to-pulse fluctuation of the WLC. An optical fiber-coupled multichannel spectrometer (with a
CMOS sensor) was used to visualize the temporal and spectral profiles (chirp-corrected) of the
pump-induced differential transmission of the WLC probe light (i.e., absorbance change), which
was further processed by a Surface Xplorer software. A motorized optical delay line was adopted
to vary the time delays (0-8 ns) between the pump and probe pulses. A routine cross-correlation
method was used to determine the instrument response function (IRF) to be ~100 fs. A
mechanical chopper worked at 500 Hz was adopted to modulate pump pulses so that the fs-TA

spectra with and without the pump pulses can be mreasured alternately.



Synthesis of 5, 10, 15, 20-tetrakis(4-formyl-biphenyl)-porphyrin (4-CHO-TBPP):

o
Pd(PPh3),, K;C03,120 °C
>/
Toluene/DMF/H,0 = 4:2:1
HoB-oH

5, 10, 15, 20-tetrakis(4-bromophenyl)-porphyrin (4-Br-TPP, 0.60 g) and 4-formylphenylboronic
acid (0.70 g) were dissolved in 40 mL DMF, 80 mL toluene and 20 mL H,O in a three-necked
flask, then added 3% Pd(PPhs)4 (0.09 g), the solution was degassed by bubbling with nitrogen for
35 min, then the solution was heated to reflux and reacted for 72 hours under N, protection. The
product was suction filtered and collected as violet black cake. The crude product was washed
with in dichloride methane and then further recrystallized from methanol in 90% yield. MALDI-
TOF-MS: Calculated: 1030.34, Found: M/Z: 1030.04.

Preparation of MnO,@Por-CTF-10x, CoO,@Por-CTF-10x, NiO,@Por-CTF-10x,
CuO,@Por-CTF-10x, and ZnO,@Por-CTF-10x.

Anhydrous manganese chloride (0.1 mmol), cobalt chloride (0.1 mmol), nickel chloride (0.1
mmol), copper chloride (0.1 mmol), or zinc chloride (0.1 mmol) were added to 25 mL DMF in a
50 mL round bottom flask. Then it was added 1.0 mL H,O and heat the solution to reflux under
nitrogen to form in precursor the solvent as the precursor before loading on Por-CTF for an hour.
Then different amount Por-CTF was added, and the suspension was kept stirring under a
designated temperature in nitrogen atmosphere under reflux in 150 °C. After 24 hours, the
heating was stopped. The resulting suspension was subjected to vacuum filtration and washed by
deionized water and methanol for several times to remove the residuals. The resulting powder
sample was heated in a blast oven at 160 °C for 24 hours to make it fully dehydrated and

converted into the metal oxide. Finally, it was vacuum dried at 90 °C for 24 hours.



Preparation of a-Fe, O3 nanoparticle

Anhydrous ferric chloride (162 mg, 0.1 mmol) was added to 25 mL DMF in a 50 mL round
bottom flask, then added 1.0 mL H,O and heat the solution to reflux under nitrogen to form
FeOOH in the solvent. The suspension was kept stirring under a designated temperature in
nitrogen atmosphere under reflux in 150 °C. After 24 hours, the heating was stopped, and the
resulting suspension was separated by centrifuge (8000 r/min) and washed by deionized water

and methanol for several times to remove the residuals.
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Figure S1. MALDI-TOF-MS spectrum of 4-CHO-TBPP monomer
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Figure S2. (a-b) FT-IR spectra of 4-CHO-TBPP, a-Fe,O3 Por-CTF and a-Fe,O3;@Por-CTF

samples.
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Figure S3. (a) Solid-state 13C NMR spectrum of Por-CTF. (b) TGA test of Por-CTF, and a-
Fe,O;@Por-CTF-10x in O,.
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Figure S5. (a) TEM image of Por-CTF. (b) HR-TEM images of Por-CTF. (¢) HAADF-STEM
images of Por-CTF. EDX mapping of (d) C-K (cyan), (¢) N-K (purple), (f) C-K and N-K of Por-
CTF (blue).
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Figure S6. (a) TEM image of bear a-Fe,0;. (b-c) HR-TEM image of bear a-Fe,O;. (d) FFT
image. (e) PXRD of bear a-Fe,Os. (f) Theoretical structure model of bear a-Fe,O; (side view).

(g) Top view of bear a-Fe,O3,
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Figure S7. TEM images and a-Fe,Oj; particle size distributions of (a-c) a-Fe,Oz@Por-CTF-5x,
(d-f) a-Fe,O3@Por-CTF-10x and (g-1) a-Fe,O3@Por-CTF-15x.



Figure S8. (a) HAADF-STEM images of a-Fe,O;@Por-CTF-10x. (b-¢) EDX mapping of N-
K(orange), O-K(yellow) and Fe-K(green) of a-Fe,Os;@Por-CTF-10x.
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Figure S9. Scanning electron microscopy image and energy dispersive X-ray (EDX) spectrums

from HAADF-STEM measurement of a-Fe,O;@Por-CTF-10x.
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Figure S10. The high-resolution XPS spectra for (a) C 1s and (b) N 1s of Por-CTF and o-
Fe,O3;@Por-CTF-10x. (c) The high-resolution XPS spectra for Fe 2p of a-Fe,O; and a-
FezO3@Por-CTF-10x.
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Figure S11. (a) High resolution XPS Fe2p spectra. (b) High resolution XPS Cls of a-Fe,0s.
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Figure S12. (a) Mott-Schottky plots for Por-CTF in 0.2 M Na,SO, aqueous solution. (b) Mott-
Schottky plots of a-Fe,O; in 0.2 M Na,SO, aqueous solution. (¢) UV-vis spectra of a-
Fe,O3@Por-CTF-10x in the solid state. (d) Bandgap width of Por-CTF, o-Fe,O; and o-
Fe,O;@Por-CTF-10x.
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Figure S13. The schematic diagram of the photocatalytic device.
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Figure S14. Carbon monoxide and hydrogen gas standard curve.
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Figure S15. Comparison of (a) TEM images and (b) FT-IR spectrum before and after catalysis
for a-Fe,O3;@Por-CTF-10x.
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Figure S16. (a) Photocatalytic CO evolution performance of the photocatalysts (20 mg) of a-
Fe,O3;@Por-CTF-10x in 5ml pure DMF (without sacrificial agent and PS). (b) Photocatalytic

performance of CO evolution with different ratio of a-Fe,O;. (¢) Recyclability and stability

experiments. (d) CO, adsorption curves in 298K and 273 K.
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Figure S17. CO and H, production rates of heterojunction systems of 20 mg a-Fe,O;@Por-CTF-
10x and (a) 20 mg (28 umol) Ru(bpy);Cl,, (b) 10 mg (14 pmol) Ru(bpy);Cl, and (c) 5 mg (7
umol) Ru(bpy);Cl,.

16



(a)

(c)

CO and H, Evolved (pmol)

CO and H, Evolved (pmol)

w
o

N
o

-
o

10

20 mg PC

Sel: 93.0%
CO: 8 umollh @

Time (hours)

5mg PC

Sel: 91.4%
CO: 2.5 ymol/h

Time (hours)

—
g

N
o

CO and H, Evolved (umol)
)

(d

—

30

Amount of CO Evolved (zmol)

10 mg PC

Sel: 92.1%
CO: 4.1 pmol/h

Time (hours)

20 mg

Time (hours)

Figure S18. CO and H; production rates of hybrid system for 5 mg (7 umol) Ru(bpy);Cl, and (a)
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Figure S19. GC-MS analysis result of CO produced from '3CO, isotope experiment of a-

Fe,O3;@Por-CTF-10x/Ru(bpy);Cl,. (a) GC-MS chromatographic peak curve of TIC detector and

(b) Mass spectrometry of gas product 3CO.
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Figure S22. (a) Steady state photoluminescent spectra of Por-CTF (red curve) and o-
Fe,O;5;@Por-CTF-10x (blue curve). (b) Time-resolved photoluminescent spectra of Por-CTF (red
curve) and a-Fe,O;@Por-CTF-10x (blue curve). (c) Electrochemical impedance curves of Por-
CTF (red), a-Fe,O;@Por-CTF-10x (blue). (d) Time-correlated photocurrent of Por-CTF (red), a-
Fe,O;@Por-CTF-10x (blue).
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Figure S23. (a) Time-resolved photoluminescent spectra and (b) Time-correlated photocurrent
experiments of a-Fe,O;@Por-CTF-5x (black), a-Fe,O3;@Por-CTF-10x (red), a-Fe,Os;@Por-
CTF-15x. (blue).
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Figure S24. (a) DMPO spin-trapping ESR spectra recorded for *OH of a-Fe,O;@Por-CTF-10x
in different time under visible light. (b) DMPO spin-trapping ESR spectra recorded for *O,- of a-
Fe,Os;@Por-CTF-10x in different time under visible light.
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Figure S26. In-situ FTIR spectra of a-Fe,O3;@Por-CTF-10x in the presence of ~10 Torr CO, at

different irradiation times under visible light: (a) carbonate region (1000—1800cm™!); (b) CO,
region (2100-2500 cm™!); (¢) CO, overtone region (3500—3800 cm™'); (d) OH stretch region
(2800—3500 cm™).
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Figure S27. In-situ FTIR spectra of a-Fe,O; in the presence of ~10 Torr CO, at different
irradiation times under visible light.
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Figure S28. In-situ FTIR spectra of Por-CTF in the presence of ~10 Torr CO, at different
irradiation times under visible light.
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Figure S29. Comparison of the in-situ FTIR spectra of a-Fe,O;(red), Por-CTF(black) and a-

Fe,O3@Por-CTF-10x (blue) in the presence of ~10 Torr CO, at different irradiation times under
visible light.
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Table S1. The results of ICP experiments.

SAMPLE Fe/Mass Conc (%) a-Fe,O3/Mass Conc (%)

Por-CTF 0 0
a-Fe,O3@Por-CTF-5x 8.98 12.83
a-Fe,O3@Por-CTF-10x 18.08 25.83
a-Fe;,O3@Por-CTF-15x 20.29 28.99

Table S2 High-resolution XPS Fe2p spectra of a-Fe,Os, Por-CTF, a-Fe,O;@Por-CTF-5x, a-

Fe,O;@Por-CTF-10x, and a-Fe,Oz@Por-CTF-15x.

SAMPLE Type | FWHM(eV) | Atomic Conc % Mass Conc %
Por-CTF Fe 2p — 0
0-Fe,O;@Por-CTF-5x | Fe2p 707.4 7.46 25.25
0-Fe,O;@Por-CTF-10x | Fe2p 707.5 13.27 38.19
a-Fe,O;@Por-CTF-15x | Fe2p 708.1 15.64 42.71
a-Fe,0; Fe 2p 708.1 25.58 56.38
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Table S3. Comparison of this work to literature reports for efficiency.

Catalyst

Cocatalyst

Evolution rate

Evolution rate

(Used amount) Sacrificial agent (umol h) (nmol g h!) References
PCN-222 (20 mg) TE/O N COOH-: 6.25 3215 ;'0/112' 1?;@113 j:(‘)/’:
Zr-bpdc@RuCO / CO: 0.09 3.0 J. Am. Chem. Soc.

(30 mg) TEOA 2016, 138, 5159,
COP (50 mg) TEi) N CH,: 1.13 226 ACS C‘Zg’;g‘"& 8,
Re-CTF-py (2 mg) TE/O A CO0: 0.70 350.0 Camzlbf;’i.zlz" 622}.1”0['
PEosinY-N (10 mg) / CO: 0.33 13.0 Angew2 (ih;,ngg],nééid
0-Fe;O;@Por-CTF / CO- 0.7 360 s work
(20 mg)
csmy | Mot | cons | b | i
RUR“’(? Eg;g"QN“ Ag, EDTA2Na | COOH-: 8.46 s A g‘ge”; 15509‘? 2016,
ZnIn,S,-In,0; (4 mg) C(’T(ggfﬂ CO: 12.3 075 [1A™ f:g”;oi‘;c 2018,
CTPs-BT (15mg) C()T(gggf% CO: 182 12133 C;:ﬁ"; ’i‘:rl] :
NC@NiCo,0, (1 mg) R“T(E%Y:H CO: 262 26,200 E”’;’(’] 8 énﬁf ‘;’85“-
NITPATTEG) G me) RuT(gg,Zf i €0:26.6 8866.7 2017,S gf-efll:(v)-wzl.
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https://doi.org/10.1039/1463-9270/1999

(20 mg)

a-FezO3@P0r-CTF

Ru(bpy);**
TEOA

CO: 8.0

400

This work

Table S4. Comparison of this work to literature reports for A.Q.E and selectivity of CO in the

Ru system.
Cocatalyst Evolution CO,
Catalyst A.Q.E .
(used amount) rate reduction References
(used amount) . (%) .
Sacrificial agent |(umol h!) Selectivity
Co-ZIF-9 Ru(b 27 A . Chem. Int. Ed.
0 ubpy)s™ (Tmg) |y 41| 148 | 550, | AmEEV- Chem. In
(0.8 pmol) TEOA 2014, 53, 1034.
MAF(Co0)-X271- Ru(b 2+ (7 J. Am. Chem. Soc.
(Co) u(bpy)s*" (7 mg) Co: — 5 98.2% m. Chem. Soc
OH (0.03 mmol) TEOA 2018, /40, 38.
Co50 Ru(b 2+ (15 Appl. Catal. B: Environ.
0304 ulbpy)s™ (15me) | 5 03 0.069 | 77.10 [1PP" Catal. B: Environ
(10 mg) TEOA 2017, 200, 141.
Co-ZIF-67 Ru(b 2+ (8 Appl. Catal. B: Environ.
y abpy)s™ Bme) | 5o o | 115 | g0, [PPL Catal B: Environ
(1 mg) TEOA 2017, 209, 476.
NC@NiCo0,04 [Ru(bpy)s;*" (7 mg) co: 262 | 1.07 98.6% Energ Environ. Sci.
(1 mg) TEOA 2018, 11, 306.
Ni(TPA/TEG Ru(b 2 (1.75 Sci. Adv.
i( ) Rulbpy)s™ (1758 | 5 566 | - 100% ot Aav
(3 mg) TEOA 2017, 3, e1700921.
CoSn(OH)g Ru(bpy);>* (10mg) CO 193 | 1.16 86.5% ACS Sustainable Chem.
(1 mg) TEOA Eng. 2018, 6, 781.
Ni MOL Ru(b (7.5 A . Chem. Int. Ed.
PYILS ubpy)s™ (7:5mg) | vy 1h s | 9o | 9780, | Am8Ew- Chem. In
(1 mg) TEOA 2018, 57, 16811.
Ni-TpBpy-COF [Ru(bpy);** (6.5mg) CO: 8.1 - 96.0% J. Am. Chem. Soc. 2019,
(10 mg) TEOA 141, 7615.
-Fe,O;@Por- [Ru(b 2+ (5
a-Fe;0;@Por- Rubpy)™ 5Smg) | ¢ | 143 | 93.0% This work
CTF (20 mg) TEOA
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