Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Self-powered ultraviolet photodetector based on TiO₂/Ag/ZnS nanotubes with high stability and fast response

Xiang Li, ^{1a} Shiyong Gao, ^{1a,c} Guangning Wang, ^c Zhikun Xu, ^c Shujie Jiao, ^{*a} Dongjun Wang*^a, Yuewu Huang, ^a Dandan Sang, ^b Jinzhong Wang ^a and Yong Zhang ^a

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

^{b.}School of Physical Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, 252059, China

^cKey Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.

^{*} E-mail address: shujiejiao@hit.edu.cn, dongjunwang@hit.edu.cn

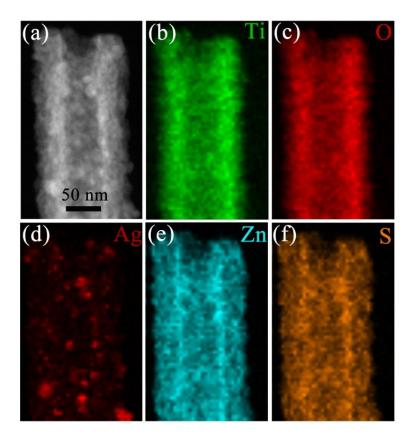


Fig. S1 (a) HAADF-STEM image of a $TiO_2/Ag/ZnS$ nanotube and corresponding EDS mapping images for Ti (b), O (c), Ag (d), Zn (e) and S (f) of the same nanotube, respectively.