Electronic Supplementary Information

Design Dirac semimetals with honeycomb Na₃Bi-lattice via isovalent

cation substitution

Xinbo Chen,[‡]ª Weida Chen,[‡]ª Shu Yu,ª Shaogang Xu,ª Ximing Rong,ª Pu Huang,^{*}ª Xiuwen Zhang,^{*}ª Su-Huai Wei^{*}^b

^a Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic

Engineering, Shenzhen University, Shenzhen, 518060, China

^b Beijing Computational Science Research Center, Beijing 100193, China

Fig. S1 Structure representation of Na₃Bi with P3c1 symmetry that can be approximated as a supercell ($\sqrt{3} \times \sqrt{3} \times 1$) of the $P6_3/mmc$ phase (A and B denote the cation sites surrounded by Bi₄ tetrahedron and Bi₃ triangle, respectively).

Fig. S2 Formation enthalpies of the alloy structures (a) $K_{3-3x}Na_{3x}Bi$, (b) $Rb_{3-3x}Na_{3x}Bi$ and (c) $Rb_{3-3x}K_{3x}Bi$ *w.r.t.* their binary constituents from PBE. Each of the circles (squares) represents an individual alloy structure constructed by randomly placing two types of alkali atoms on the cation sites in the unit cell ($\sqrt{3} \times \sqrt{3} \times 1$ supercell) of the

honeycomb structure. The blue circles represent the unstable compounds (plus signs) which are introduced in the Fig. 1(b). The compounds on the convex hulls are shown by solid circles. The green solid triangles in (a) represent the experimentally known compound Na₂KBi (space group No. 225)¹ and other compounds (K₂NaBi, Na₂RbBi, K₂RbBi) in the experimental Na₂KBi phase. Meanwhile, two of them (Rb₂NaBi, Rb₂KBi) in the experimental phase are even out of the range in the figure which are above the convex hulls.

Fig. S3 Phonon spectrum of Rb₂KBi under biaxial tensile strain (+0.08%).

Fig. S4 Thermodynamic stability analysis of Rb_2KBi under biaxial tensile strain (+0.08%) in the element chemical potential space with stability region shown by green zone. Each of the blue lines represents a binary or ternary competing phase.

Fig. S5 The differential charge densities of (a) K_2NaBi ($\rho = 9.2 \times 10^4 \text{ eÅ}^{-3}$), (b) Rb_2NaBi ($\rho = 9.2 \times 10^4 \text{ eÅ}^{-3}$) and (c) Rb_2KBi ($\rho = 2.0 \times 10^4 \text{ eÅ}^{-3}$), as evaluated by subtracting from the charge density of the ternary (*e.g.* K_2NaBi), the charge densities of binaries (*e.g.* K_3Bi and Na_3Bi) with the same structure as the ternary but only one cation identity. Blue: charge dissipation. Yellow: charge accumulation.

Fig. S6 Electronic structures of (a) K₂NaBi, (b) Rb₂NaBi and (c) Rb₂KBi from HSE06+SOC. The red circles indicate the positions of Dirac cones.

Fig. S7 Hidden spin polarizations of the electronic states near the Dirac cone at Fermi level for (a, d, g) K₂NaBi, (b, e, h) Rb₂NaBi and (c, f, i) Rb₂KBi. Inset: α and β sectors as inversion partners in the honeycomb structure. (a, b, c) Three-dimensional plots with red (blue) arrows indicating the local spin polarizations on the α (β) sectors, demonstrating the strong (vanishing) spin polarizations on the lower (upper) part of the Dirac cone. (d, e, f) and (g, h, i) Corresponding two-dimensional diagrams of spin polarizations of the lower cone on α and β sectors, respectively. The arrows indicate the in-plane spin direction and the color scheme indicates the out-of-plane components.

Table S1 Total energies ($^{E}_{tot'}$ s) of K₂NaBi, Rb₂NaBi and Rb₂KBi in crystal structures with chemical formula AB₂X relative to the honeycomb structure. The $P^{3}c^{1}$ structure as shown in Fig. S1 relaxes into $P6_{3}/mmc$ honeycomb structure for the three ternaries (K₂NaBi, Rb₂NaBi and Rb₂KBi). The other possible structures have much higher total energy than the $P6_{3}/mmc$ phase and the five structures with the lowest energies for each compound are shown here. The remaining structures are listed below (with space group in parentheses): V₂FeGe (40), As₂LaAu (42), Ti₂CoNi (44), Li₂HN (57), Ni₂GeP (61), As₂SmAu (64), Ti₂ZrO (65), C₂NCI (72), H₂BN (96), In₂SnPb (99), Pd₂CePt (123), B₂LuC (127), B₂TbC (135), Si₂LiB (137), H₂LiN (138), H₂CO (161), Bi₂PdPt (164), and Er₂MgOs (225).

Compound	Space group No.	^E tot of K₂NaBi (eV/atom)	^E tot of Rb₂NaBi (eV/atom)	^E _{tot} of Rb₂KBi (eV/atom)
Na₂NaBi	194	0	0	0
(Na₃Bi-type)				
Al ₂ Culr	67	0.027	0.034	0.027
Li ₂ MgSi	215	0.030	0.039	0.028
Sr ₂ BaNp	216	0.037	0.051	0.030
Si ₂ MnNi	4	0.037	0.051	0.030
I ₂ YbO	62	0.037	0.043	0.029

Reference:

[1] I. Y. Sklyadneva, I. P. Rusinov, R. Heid, K.-P. Bohnen, P. M. Echenique, E. V. Chulkov. *Sci. Rep.*, 2016, **6**, 24137.