Quantifying the composition dependency of the ground-state structure, electronic property and phase transition dynamics in the ternary transitionmetal-dichalcogenide monolayers

Mingwei Chen^a, Linggang Zhu^{*a}, Qifan Chen^a, Naihua Miao^{ab}, Chen Si^a, Jian Zhou^a, Zhimei Sun^{*ab}

^aSchool of Materials Science and Engineering, Beihang University, Beijing 100191,

China

^bCenter for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China *corresponding author: <u>lgzhu7@buaa.edu.cn</u>; <u>zmsun@buaa.edu.cn</u>

Fig. S1 Phonon spectrums of H phases of the ternary TMDs

Fig. S2 Phonon spectrums of T' phases of the ternary TMDs

Fig. S3 Phonon spectrums of the T phases of the ternary TMDs

Fig. S4 Density of states calculated by using the GGA-PBE functionals. The value of x varies from 0 to 1. PBE functionals reveal that the pure $HfSe_2$, $HfTe_2$, $ZrTe_2$, and VTe_2 have the semiconducting properties.

Fig. S5 MEP of the transition between H phase and T phase of $V_xMo_{1-x}Te_2$. It can be seen that the H phase may translate to a distorted structure with lower energy than the T phase in the transition path.