Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

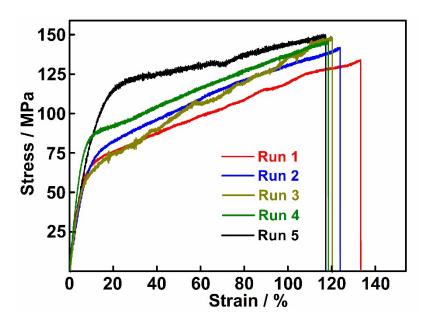
Supporting Information

Core-shell PEDOT: PSS/SA composite fibers *via* a single-nozzle technique enables wearable sensor applications

Mingxu Wang, ^{ab} Qiang Gao, *ab Jiefeng Gao^b, Chunhong Zhu^c, Kunlin Chen *b

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

225002, China


^bKey Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China

^cFaculty of Textile Science and Technology, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan

Corresponding author: Dr. Qiang Gao(gaoqiang@yzu.edu.cn)

Fig. S1 Digital photo of as-spun PEDOT: PSS/SA composite (x=1:3) fibers *via* wet-spinning.

Fig. S2 Strain-stress curves of PEDOT: PSS/SA composite (x=1:3) fibers for different repeated drying-swelling process.

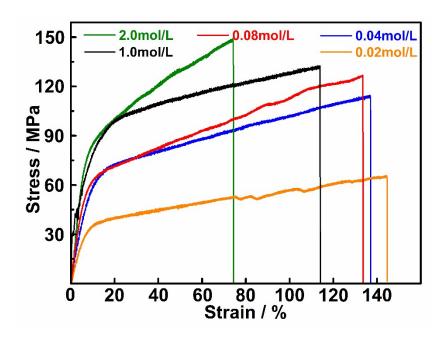
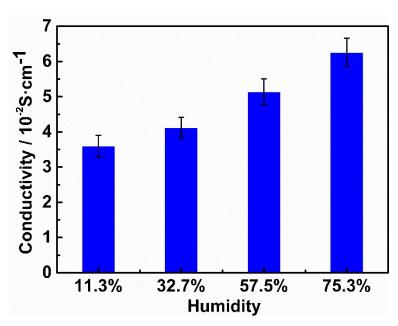



Fig. S3 Strain-stress curves of PEDOT: PSS/SA composite fibers (x=1:3) with different Ca^{2+} concentrations in coagulation bath.

Fig. S4 Electroconductivity of the PEDOT: PSS/SA composite fibers (x=1:3) under different humidity.