Supplementary Information

Solvothermal Synthesis of Cesium Lead Halide Nanocrystals with Controllable Dimensions: A Stoichiometry Defined Growth Mechanism

Min Chen,^{*a,b, ‡*} Huicheng Hu,^{*b, ‡*} Nan Yao,^{*b*} Xiaolei Yuan,^{*a,**} Qixuan Zhong,^{*b*} Muhan Cao,^{*b,**} Yong Xu,^{*b*} Qiao Zhang^{*b,**}

^a School of Chemistry and Chemical Engineering, Nantong University, Nantong, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China

^b Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China

* Corresponding Authors

Email:

xlyuan@ntu.edu.cn (X.Y.); mhcao@suda.edu.cn (M.C.); qiaozhang@suda.edu.cn (Q.Z.)

Experimental Section

Materials: Cesium acetate (CsOAc, 99.998%), lead chloride (PbCl₂, ultradry, 99.999%), lead bromide (PbBr₂, ultradry, 99.999%), lead iodide (PbI₂, ultradry 99.999%), 1octadecene (ODE, 90%) and oleic acid (OA, 90%) were purchased from Alfa Aesar. Noctlyamine (OctAm, 99%) was obtained from Aladdin. Anhydrous hexane was obtained from Sigma-Aldrich. All reagents were used as received without further purification.

Preparation of Cs-oleate (0.15 M) precursor: CsOAc (0.188 g, 0.98 mmol) was loaded in a 20 mL glass vial with ODE (6 mL) and OA (0.5 mL). The mixture was heated to 120 °C until all CsOAc dissolved.

Preparation of PbBr₂ solution (0.025 M): PbBr₂ (0.1 g, 270 μ mol) was added into a 20 mL glass vial with 10 mL ODE, 0.5 mL OA and 0.5 mL OctAm in glovebox and heated to 120 °C. After PbBr₂ completely dissolved, the solution was cooled down for further usage.

Preparation of CsPbBr₃ nanocrystals with controllable morphologies: For synthesis of CsPbBr₃ nanocrystals with different morphologies, certain volume of Cs-oleate solution was added. In a typical experiment, as-prepared PbBr₂ stock solution (11 mL) and different volume of Cs-oleate (0.2~0.8 mL) (0.15 M) was added into a Teflon-line autoclave (50 mL) and then placed in a rolling oven. The reaction was kept at 120 °C for 60 minutes.

Preparation of low dimensional CsPbX₃ (X=Cl, Cl/Br, Br/l) nanostructures: For preparation of low dimensional CsPbX₃ (X=Cl, Cl/Br, Br/l) nanostructures, 0.4 mL Cs-oleate (0.15 M) was used. In a typical experiment, PbCl₂ (0.075 g, 0.27 mmol) or PbCl₂/PbBr₂ mixtures and PbBr₂/PbI₂ mixtures with appropriate ratios were loaded into a glass vial (20 mL) with OED (10 mL), OA (0.5 mL) and OctAm (0.5 mL) in glovebox. The mixture was heated to 120 °C until completely dissolved. Then, 0.4 mL Cs-oleate (0.15 M) was added into PbX₂ stock solution. The mixture was transferred into an autoclave (50 mL) and placed into a rolling oven. The reaction was kept at 120 °C for 60 minutes. **Isolation and purification of nanocrystals:** After naturally cooling down to room temperature, products were extracted by centrifugation. 5 mL hexane was added into

the crude solution and then centrifuged at 10000 rpm for 8 minutes to remove the residual reactants. Then, the products were dispersed in 5 mL hexane for further characterization.

Anion exchange reaction with CsPbBr₃ nanoribbons: We used CsPbBr₃ nanoribbons as the starting materials to carry out the anion exchange reaction. The anion exchange reaction was conducted in a 10 mL vial. First, PbCl₂ or Pbl₂ used as the anion source was dissolved in hexane (5 mL), OA (0.2 mL) and OctAm (0.2 mL) in a vial under inert gas atmosphere. Typically, 0.5 mL CsPbBr₃ nanoribbons solution was dispersed in 5 mL hexane. Then, certain amount of anion source was added into the diluted CsPbBr₃ nanoribbons solution at room temperature to initiate the anion exchange reaction. After several minutes, the products were collected and re-dispersed in hexane for further characterization.

Characterizations: The rolling oven (HZ-220) was purchased from Hezongyiqi, Gongyi. UV–vis absorption spectra were recorded in a range of 300-800 nm by using an Evolution 220 spectrophotometer in transmission mode. The PL spectra and PLQY were obtained through a FLUOROMAX-4 spectrofluorometer equipped with a Xenon lamp. PLQY values were collected by using 400 nm as excitation wavelength and a calibrated integrated sphere. The PL lifetime measurements were taken by a HORTB-FM-2015 spectrofluorimeter. The fluorescence digital images of NCs solution under a 365 nm UV light illumination were collected by a Canon EOS 80D camera. Powder X-ray diffraction were performed using a Bruker D8 Advance diffractometer with Cu K α radiation (λ =1.54056 Å). TEM images were collected by a TECNAI G2 F20 transmission electron microscope with an accelerating voltage 200 kV and a Gatan SC200 CCD camera.

3

Supplementary Tables and Figures:

Table S1. The summary of reaction parameters and optical properties of $CsPbBr_3$ nanocrystals with different morphologies. The amount of Cs precursor was varied while the amount of added $PbBr_2$ precursor was kept at 270 µmol (0.1 g).

Cs-oleate precursor (mL)	Cs (µmol)	Morphology	Length/width (nm)	PLQY (%)	Average lifetime (ns)
0.2	30	nanorods	94.7/4.5	18	2.6
0.4	60	nanoribbons	63.6/10.2	24	4.2
0.6	90	nanoplatelet	36.9/15.0	31	5.1
		S			
0.8	120	nanocubes	14.2	80	12.4

Table S2. The amount of $PbBr_2$ precursor was used to controllably synthesize products. The amount of Cs precursor was kept constant (Cs-oleate=0.4 mL, 60 μ mol).

PbBr ₂ precursor (g)	PbBr₂ (µmol)	Morphology	Length/width (nm)
0.15	406	nanorods	89.0/6.4
0.069	186	nanocubes	13.5

Fig. S1 TEM images of assembled $CsPbBr_3$ (a) nanoplatelets, (b) nanoribbons and (c) nanorods. All samples were stacked in a face-to-face manner. The model in (a) shows the nanoplatelets were stood titled with the substrate. The models in (b) and (c) show the nanoribbons and nanorods were stood edge-on perpendicular to the substrate.

Fig. S2 Selected area fast Fourier transform (FFT) pattern of $CsPbBr_3$ nanocubes.

Fig. S3 Selected area fast Fourier transform (FFT) pattern of CsPbBr₃ nanoribbons.

Fig. S4 The average lifetimes of $CsPbBr_3$ nanocrystals with different morphologies.

Fig. S5 The enlarged XRD patterns of CsPbBr₃ nanoplatelets, nanoribbons and nanorods (2θ =13°-23°).

Fig. S6 EDX spectra of CsPbBr₃ (a) nanocubes, (b) nanoplatelets, (c) nanoribbons and (d) nanorods.

Fig. S7 1D CsPbBr₃ nanorods obtained by adding 406 μ mol of PbBr₂ precursor with fixed the amount of Cs precursor. (a-b) TEM images, (c-d) corresponding length and width distribution histograms and (e) UV-Vis and PL emission spectra. CsPbBr₃ nanorods emitted bright blue emission. Their lateral side length and width are around 89 nm and width 6.4 nm, respectively.

Fig. S8 3D CsPbBr₃ nanocubes obtained by adding 186 μ mol of PbBr₂ precursor with fixed amount of Cs precursor. (a) TEM image and (b) UV-Vis and PL emission spectra of nanocubes. CsPbBr₃ nanocubes show a green emission peak around 517 nm.

Fig. S9 XRD patterns of low dimensional CsPbX₃ nanocrystals with different halide (X=Cl, Cl/Br, and Br/l) compositions.

Fig. S10 UV-Vis spectra of the halide-anion exchanged samples prepared by mixing $CsPbBr_3$ nanoribbons with various concentrations of $PbCl_2$ or PbI_2 solution. The absorption spectra of $CsPbX_3$ nanoribbons were varied from 370 nm to 580 nm.

Fig. S11 TEM images of (a) CsPbCl₃ and (b) CsPbl₃ nanoribbons obtained from a fast ion-exchange process.