Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting information

Key Host Parameter for Long Lifetime in Phosphorescent Organic Light-

Emitting Diodes : Bond Dissociation Energy in Triplet Excited State

Chang Yoon Yang¹⁺, Sunwoo Kang²⁺, Hyein Jeong², Ho Jin Jang¹, Yoonkyoo Lee², Jun

Yeob Lee^{1*}

¹¹School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Seobu-ro, Suwon, Gyeonggi, 16419, Korea E-mail : <u>leej17@skku.edu</u>

²Display Research Center, Samsung Display Co.1 Samsung-ro, Giheung-gu, Yongin, Gyeonggi-do, Korea

+ Chang Yoon Yang and Sunwoo Kang contributed equally.

Experimental

General information

All chemicals and reagents were purchased from commercial suppliers. 9H-3,9'-bicarbazole was purchased from Sunfine global Co. Ltd. and was further sublimed before use. 2-Fluorobenzonitile and 4-fluorobenzonitrile were purchased from TCI Co.. 3-Fluorobenzonitrile was purchased from Alfa Aesar Co.. Cesium carbonate used as a base was purchased from Samchun Chem. Toluene, tetrahydrofuran, *n*-hexane, and methylene chloride were products of Samchun pure chemical Co. Ltd. *N*,*N*-dimethylformamide (DMF) was purchased from Daejung Chemical & Metal Co.. All reactions and manipulations were performed in the oil bath. All column chromatography (methylene chloride (MC)/*n*-hexane (HEX) mixed solvent) was carried out on a stationary phase of the column on silica gel. All materials were purified by vacuum sublimation in order to get purity higher than 99.9 % before the device test.

The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded with a Unity Inova (Varian, 500 MHz) spectrometer. Solvent for the NMR analysis was dimethyl sulfoxide(DMSO-d₆). The HOMO and LUMO were estimated and calculated using cyclic voltammetry (Ivium Tech., Iviumstat). The UV-vis spectra were observed using UV-vis spectrophotometer (JASCO, V-730) and the PL spectra were obtained using a fluorescence spectrophotometer (PerkinElmer, LS-55). UV-vis measurements were performed using a tetrahydrofuran solution of the sample. Solution PL measurements were performed using a toluene. Tetrahydrofuran and Toluene was distilled over sodium and calcium hydride. The equipment to measure mass spectra was Advion, Expresion^L CMS spectrometer in APCI mode. The triplet energy of the material was measured after 2 ms delay time at 77 K using a frozen tetrahydrofuran solution in liquid nitrogen. The instrument to measure mass spectra was an Advion, Expresion^L CMS spectrometer in APCI mode. Expression^L CMS spectrometer in APCI mode.

analyzed using high performance liquid chromatography (Younglin Instrument Co.) using a mobile phase of acrylonitrile: methylalcohol(9:1).

Synthesis

2-(9H-[3,9'-bicarbazol]-9-yl)benzonitrile (oCzBN).

All the reaction processes were performed in the oil bath. Reactants of 9H-3,9'-bicarbazole (1.5g, 4.51 mmol), 2-fluorobenzonitrile (0.72ml, 6.77 mmol), and cesium carbonate (2.94g, 9.03 mmol) were all added into a solution of DMF in a pressure tube. The temperature of the oil bath was adjusted to 150° C. The mixture was heated by keeping the condition and stirred overnight. The completion of the reaction was verified by a spot in the thin layer chromatography. After the reaction, the reaction vessel was cooled down, and the mixture was allowed to stand at room temperature. Then, the reaction mixture was extracted with dichloromethane and distilled water. Small amount of salt and water in organic layer were removed by anhydrous magnesium sulfate. After filtering off the magnesium sulfate, the organic phase was collected and concentrated by a rotary evaporator. A solid sample was adsorbed onto silica gel, and the crude material was purified by silica gel column chromatography using a *n*-hexane : MC (1 : 2) mixture as the eluent to obtain the desired product as a white powder with a purity of 99.7%. Subsequently, recrystallization was carried out using a mixed solvent of toluene and hexane for 24 h to obtain a high purity of 99.9%. As a final step, sublimation purification was performed for device test.

Yield 72% (1.40g), ¹H NMR (500 MHz, DMSO-d₆): δ 8.59 (s, 1H), 8.38 (d, 1H, *J* = 8 H_Z), 8.27 (t, 3H, *J* = 7.5 H_Z), 8.07 (t, 1H, *J*= 8.5 H_Z), 7.93 (d, 1H, *J* = 8 H_Z), 7.86 (t, 1H, *J* = 8.25 H_Z), 7.64 (d, 1H, *J* = 9 H_Z), 7.52 (t, 1H, *J* = 7.75 H_Z), 7.48-7.44 (m, 3H), 7.39-7.35 (m, 3H), 7.32-7.29 (m, 3H) MS (APCI) *m*/*z* 433.5 [(M + H)⁺]. ¹³C NMR (125 MHz, DMSO-d₆): δ 141, 139.4, 139, 135.6, 135, 130, 129.9, 129.8, 127.2, 126.2, 125.6, 124.2, 122.7, 122.5, 121.4, 121, 120.5, 119.8, 119.7, 116.2, 111.6, 111.1, 110, 109.6.

3-(9H-[3,9'-bicarbazol]-9-yl) benzonitrile (mCzBN)

The synthesis method of mCzBN was the same as that of oCzBN. 9H-3,9'-bicarbazole (1.5g, 4.51 mmol), 3-fluorobenzonitrile(0.72ml, 6.77 mmol), and cesium carbonate (2.94g, 9.03 mmol) were used for the synthesis.

Yield 73% (1.42 g), ¹H NMR (500 MHz, DMSO-d₆): δ 8.56 (s, 1H), 8.36 (d, 1H, J = 7.5 H_Z), 8.33 (s, 1H), 8.28 (d, 2H, J = 7.5 H_Z), 8.13 (d, 1H, J = 8.5 H_Z), 8.06 (d, 1H, J = 8 H_Z), 7.93 (t, 1H, J = 8 H_Z), 7.69 (d, 1H, J = 8.5 H_Z), 7.63 (d, 1H, J = 8.5 H_Z), 7.54-7.49 (m, 2H), 7.46-7.42 (m, 2H), 7.37-7.34 (m, 3H), 7.30 (t, 2H, J = 7.8 H_Z) MS (APCI) m/z 433.5 [(M + H)⁺]. ¹³C NMR (125 MHz, DMSO-d₆): δ 141.1, 140.6, 139, 137.5, 132, 131.7, 131.7, 130.5, 129.7, 127.2, 126.2, 125.6, 124.2, 122.7, 122.5, 121.3, 120.9, 120.5, 119.8, 119.6, 118.1, 113.4, 111.1, 109.9,109.6.

4-(9H-[3,9'-bicarbazol]-9-yl)benzonitrile (pCzBN).

The synthesis method of pCzBN was the same as that of oCzBN. 9H-3,9'-bicarbazole (2g, 6.02 mmol), 4-fluorobenzonitrile (0.99ml, 9.03 mmol), and cesium carbonate (3.95g, 12.03 mmol) were used for the synthesis.

Yield 76% (1.98 g),¹H NMR (500 MHz, DMSO-d₆): δ 8.57 (s, 1H), 8.37 (d, 1H, J = 8 H_Z), 8.28 (d, 2H, J = 7.5 H_Z), 8.19 (d, 2H, J = 8.5 H_Z), 8.01 (d, 2H, J = 8.5 H_Z), 7.74 (d, 1H, J = 9 H_Z), 7.64 (d, 1H, J = 9 H_Z), 7.57–7.51 (m, 2H), 7.44 (t, 2H, J = 7.5 H_Z), 7.37-7.35 (m, 3H), 7.30 (t, 2H, J = 7.5 H_Z).' MS(APCI) *m*/*z* 433.5 [(M + H)⁺]. ¹³C NMR (125 MHz, DMSO-d₆): δ 141.6, 141.5, 140.7, 139, 130.5, 127.9, 127.8, 126.7, 126.2, 125.1, 123. 5, 123, 121.9, 121.7, 121, 120.3, 120.2, 119, 111.8, 110.6, 110.5, 110.2

Computational Details

The ground state geometries of three different host materials were carried out the by employing a nonlocal density functional of Becke's three parameterized Lee-Yang-Parr exchange functional (B3LYP) with 6-31G* level of theory as implemented in the suite of Gaussian 09 package¹. To obtain the molecular structures and excitation energies in singlet and triplet excited state, two different approaches were taken. The time-dependent density functional theory (TDDFT) simulations for singlet excited state were preferentially carried out by employing CAM-B3LYP functional with same basis set. It is already known that the B3LYP functional generally gives underestimated the excitation energy of charge transfer molecule due to inappropriate description of Coulomb coupling.^{2,3} Therefore, range separated (RS) functionals including short- and long-range Coulomb operator should be applied to exactly obtain the transition characteristics. Nevertheless, the CAM-B3LYP functional ($\omega = 33$) should be carefully modified to predict accurate values of singlet adiabatic excitation energies of three host materials due to overestimation of excitation energies. Accordingly, the ω value was set to be 25, which gives a quantitative prediction of singlet adiabatic excitation energies as compared experimental results. For triplet excited state, it is well known that spin unrestricted simulation has been known to be provided qualitative prediction of the lowest triplet excited state energy.⁴ In addition, the spin unrestricted simulation is very efficient method to reduce the time cost for geometrical optimization of triplet excited state. Therefore, the molecular structures in triplet excited states were performed by spin unrestricted B3LYP functional with same basis set. The corresponding lowest triplet transition energies of three host materials were calculated by means of the Δ SCF method. To obtain the degradation reaction profiles of three host materials in singlet and triplet excited states, the fully relaxed potential energy surface simulations were carried out based on the bond elongation of targeted bond. The initial bond distances of singlet and triplet excited states were set from each of singlet and triplet excited states optimized structures. The interval distances set to be 0.1 angstrom. In degradation reaction pathway, the activation energy should be considered and compared in these materials. However, it should be noticed that the triplet-triplet annihilation (TTA) process can provide a sufficient energy to overcome activation energy in these complexes. Furthermore, TTA rate behaves to impact on the degradation rate. Therefore, the chemical stability of three host materials was investigated by energy differences between initial and final state. In the same perspectives, the chemical stability in singlet excited state was determined.

- 1. M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, *Inc., Wallingford, CT*, 2009, **200**, 28.
- 2. M. A. Rohrdanz, K. M. Martins and J. M. Herbert, *The Journal of chemical physics*, 2009, **130**, 054112.
- 3. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai and K. Hirao, *The Journal of chemical physics*, 2004, **120**, 8425-8433.
- 4. A. Berces and M. Z. Zgierski, *Chemical Physic Letters*, 1996, **257**, 61-67.

Materials	C-N bond (at carbazolycarbazole)			C-N bond (at benzonitrile)		
	Neutral	Cation	Anion	Neutral	Cation	Anion
oCzBN	3.672	4.620	2.042	3.534	3.662	1.54
mCzBN	3.663	4.493	2.057	3.569	3.58	1.60
pCzBN	3.659	4.465	2.085	3.585	3.573	1.648

 $\textbf{Table S1.} Bond \ dissociation \ energy \ calculation \ results. \ The units \ are \ in \ eV$

Materials	C-N (at carbazol	bond ycarbazole)	C-N bond (at benzonitrile)	
	Singlet	Triplet	Singlet	Triplet
oCzBN	1.177	0.648	0.982	0.396
mCzBN	0.999	0.526	0.886	0.432
pCzBN	1.087	0.396	0.901	0.648

		oCzBN	mCzBN	pCzBN
EQE ^{a)}	1000 cd/m ²	5.4	5.2	9.4
(%)	Max	5.5	5.9	9.7
PE ^{b)}	1000 cd/m ²	4.7	5.1	11.1
(lm/W)	Max	6.3	9.1	14.5
CI	Ec)	(0.15,0.23)	(0.15,0.23)	(0.15,0.24)
Device lifetime ^{d)}		48.8	48.9	103.6
(ł	ı)	10.0		100.0

Table S2. Blue PhOLEDs device results

a) External quantum efficiency, ^{b)} power efficiency, ^{c)} color coordinates, ^{d)} device lifetime of 50% luminance decay at initial luminance of 100 cd/m²

		oCzBN	mCzBN	pCzBN
EQE ^{a)}	1000 cd/m ²	15.6	17.7	17.3
(%)	Max	16.2	18.4	18.1
PE ^{b)}	1000 cd/m ²	23.2	29.0	33.6
(lm/W)	Max	27.7	41.1	46.6
CIE	<u>3</u> c)	(0.28, 0.63)	(0.28, 0.64)	(0.28, 0.64)
Device lifetime ^{d)}		350.5	472 4	743.6
(h)	550.5	T/2.T	7-5.0

 Table S3. Green PhOLEDs device results

a) External quantum efficiency, ^{b)} power efficiency, ^{c)} color coordinates, ^{d)} device lifetime of 70% luminance decay at initial luminance of 200 cd/m²

Materials	BDE					
	Neutral	Cation	Anion	Triplet	Singlet	
oCzBN	3.534	3.662	1.54	0.396	0.982	
mCzBN	3.569	3.58	1.60	0.432	0.886	
pCzBN	3.585	3.573	1.648	0.648	0.901	

Table S4. Bond dissociation energy calculation results at weakest bond

Table S5. Cartesian coordinates of oCzBN, mCzBN, and pCzBN in singlet and triplet excited

states.

The geometry of oCzBN in singlet excited state					
1	С	5.71869	2.530504	1.011819	
2	С	4.415013	2.986142	1.234529	
3	С	3.312366	2.175137	0.986548	
4	С	3.549079	0.89595	0.487257	
5	С	4.857446	0.412839	0.290716	
6	С	5.947235	1.239056	0.549788	
7	Н	6.558987	3.186891	1.216292	
8	Н	4.255783	3.989443	1.618244	
9	Н	2.310082	2.529879	1.197743	
10	Н	6.960419	0.875885	0.402437	
11	С	3.370402	-1.27457	-0.19962	
12	С	2.913201	-2.50327	-0.67252	
13	С	3.868517	-3.44401	-1.04226	
14	С	5.237355	-3.16521	-0.96233	
15	С	5.682345	-1.92082	-0.52782	
16	С	4.74318	-0.96616	-0.15023	
17	Н	1.856582	-2.72141	-0.77756	
18	Н	3.538301	-4.4104	-1.41068	
19	Н	5.957058	-3.92188	-1.25937	
20	Н	6.744135	-1.69431	-0.49493	
21	N	2.63514	-0.1357	0.192634	
22	С	1.251333	-0.05023	0.272195	
23	С	0.515459	-1.12813	0.824789	
24	С	0.593341	1.106176	-0.21448	
25	С	-0.85607	-1.09045	0.893148	
26	Н	1.056446	-1.97433	1.231035	
27	С	-0.7776	1.151832	-0.16974	
28	Н	1.172725	1.89731	-0.67723	
29	С	-1.50606	0.049476	0.380363	
30	Н	-1.4339	-1.89984	1.320729	
31	С	-1.7815	2.10568	-0.62559	
32	Ν	-2.83214	0.279206	0.288689	
33	С	-3.03079	1.521851	-0.33597	
34	С	-1.72987	3.348396	-1.23779	
35	С	-4.2318	2.139011	-0.64475	
36	С	-2.93377	3.986737	-1.554	
37	Н	-0.77941	3.81779	-1.47633	
38	С	-4.16074	3.389284	-1.26372	
39	Н	-5.17636	1.66003	-0.41438	
40	Н	-2.91167	4.958854	-2.03684	
41	Н	-5.08053	3.903262	-1.52563	
42	С	-3.85501	-0.66875	0.627066	
43	С	-3.99598	-1.83163	-0.23098	
44	С	-4.67574	-0.44314	1.717715	
45	С	-5.08588	-2.70588	0.112026	
46	С	-5.70053	-1.32939	2.034835	
47	Н	-4.50656	0.443472	2.325306	
48	С	-5.89047	-2.46579	1.191816	

49	Н	-5.25739	-3.57425	-0.51719
50	Н	-6.34378	-1.15093	2.887928
51	Н	-6.69937	-3.15862	1.409627
52	С	-3.13671	-2.06668	-1.30201
53	N	-2.3716	-2.23702	-2.18189

The geometry of oCzBN in triplet excited state					
1	6	-5.73095	-2.52999	1.066146	
2	6	-4.42559	-2.96907	1.333907	
3	6	-3.3208	-2.15312	1.090494	
4	6	-3.55558	-0.88961	0.540871	
5	6	-4.86906	-0.42147	0.295548	
6	6	-5.96018	-1.25165	0.55684	
7	1	-6.57143	-3.18615	1.272887	
8	1	-4.26807	-3.95928	1.751767	
9	1	-2.31715	-2.48566	1.328413	
10	1	-6.97348	-0.90356	0.37603	
11	6	-3.37046	1.256997	-0.20982	
12	6	-2.90791	2.481068	-0.69963	
13	6	-3.85894	3.410371	-1.12012	
14	6	-5.23225	3.126671	-1.06821	
15	6	-5.68475	1.889581	-0.61054	
16	6	-4.7509	0.943596	-0.18405	
17	1	-1.8487	2.699231	-0.76908	
18	1	-3.52332	4.370098	-1.50212	
19	1	-5.9479	3.872946	-1.40078	
20	1	-6.74691	1.660863	-0.59658	
21	7	-2.63786	0.134205	0.231566	
22	6	-1.24712	0.044784	0.333607	
23	6	-0.51384	1.106085	0.866524	
24	6	-0.59835	-1.1682	-0.16137	
25	6	0.88854	1.058253	0.937545	
26	1	-1.04368	1.949279	1.294591	
27	6	0.805298	-1.17568	-0.18639	
28	1	-1.18595	-1.93117	-0.65433	
29	6	1.521238	-0.07919	0.347474	
30	1	1.459076	1.826607	1.44164	
31	6	1.790672	-2.11681	-0.66513	
32	7	2.866333	-0.29967	0.212965	
33	6	3.068604	-1.5579	-0.39518	
34	6	1.724057	-3.36678	-1.29555	
35	6	4.257329	-2.18939	-0.73219	
36	6	2.915727	-4.01679	-1.62941	
37	1	0.764883	-3.81817	-1.53245	
38	6	4.165007	-3.44374	-1.35401	
39	1	5.219016	-1.72993	-0.52966	
40	1	2.872399	-4.98601	-2.11916	
41	1	5.07375	-3.97148	-1.62677	
42	6	3.886467	0.634654	0.538454	
43	6	3.89738	1.928297	-0.06197	
44	6	4.867908	0.283901	1.467307	
45	6	4.901089	2.840551	0.340031	
46	6	5.858549	1.192576	1.833007	

47	1	4.829572	-0.70397	1.916433
48	6	5.862379	2.481613	1.271571
49	1	4.91279	3.827753	-0.11092
50	1	6.612293	0.906679	2.559892
51	1	6.624098	3.199683	1.560599
52	6	2.995477	2.30485	-1.0991
53	7	2.31215	2.656234	-1.97889

The geometry of mCzBN in singlet excited state					
1	С	6.032372	2.194958	1.028844	
2	С	4.747512	2.693955	1.267093	
3	С	3.613429	1.942669	0.976585	
4	С	3.799602	0.679285	0.418427	
5	С	5.087854	0.1512	0.207385	
6	С	6.209779	0.917441	0.509088	
7	Н	6.897945	2.805059	1.26788	
8	Н	4.627917	3.683477	1.697861	
9	Н	2.626228	2.328935	1.202536	
10	Н	7.207755	0.518519	0.351259	
11	С	3.535508	-1.45149	-0.36022	
12	С	3.035627	-2.64544	-0.87682	
13	С	3.954602	-3.60986	-1.27672	
14	С	5.332521	-3.38765	-1.18277	
15	С	5.822526	-2.17922	-0.70043	
16	С	4.919639	-1.20294	-0.29197	
17	Н	1.972136	-2.8228	-0.9852	
18	Н	3.589076	-4.55071	-1.67666	
19	Н	6.023851	-4.16101	-1.50291	
20	Н	6.892117	-1.99558	-0.65252	
21	N	2.844741	-0.29883	0.071238	
22	С	1.464833	-0.14784	0.131934	
23	С	0.661221	-1.20992	0.61592	
24	С	0.876936	1.066098	-0.30124	
25	С	-0.70876	-1.0957	0.681105	
26	Н	1.146997	-2.10458	0.986682	
27	С	-0.4898	1.194396	-0.25054	
28	Н	1.504022	1.846542	-0.71754	
29	С	-1.28564	0.112409	0.241745	
30	Н	-1.33649	-1.87951	1.085579	
31	С	-1.43092	2.241461	-0.63022	
32	N	-2.59381	0.442282	0.185671	
33	С	-2.71496	1.734621	-0.3379	
34	С	-1.30086	3.515054	-1.16127	
35	С	-3.87355	2.46439	-0.56041	
36	С	-2.46052	4.263728	-1.39239	
37	Н	-0.32392	3.928569	-1.39601	
38	С	-3.72148	3.745336	-1.09548	
39	Н	-4.84587	2.045217	-0.3304	
40	Н	-2.37638	5.261461	-1.81178	
41	Н	-4.60503	4.346544	-1.28588	
42	С	-3.67551	-0.40614	0.629272	
43	С	-4.53455	-0.90576	-0.31316	
44	С	-3.74525	-0.6992	2.015257	

45	C	-5.606	-1.76351	0.090313
46	C	-4.84064	-1.52386	2.411017
47	Н	-3.12921	-0.17387	2.733613
48	C	-5.72207	-2.04258	1.503866
49	Н	-4.97322	-1.74707	3.466674
50	Н	-6.53585	-2.67941	1.837191
51	Н	-4.39238	-0.67925	-1.36516
52	C	-6.49672	-2.29068	-0.85353
53	N	-7.23522	-2.73027	-1.65147

The geometry of mCzBN in triplet excited state					
1	6	6.067858	2.056583	1.564331	
2	6	4.770044	2.500506	1.81872	
3	6	3.603677	1.762282	1.329067	
4	6	3.833756	0.626618	0.613333	
5	6	5.167103	0.132716	0.342743	
6	6	6.30783	0.891787	0.837784	
7	1	6.908884	2.633318	1.940456	
8	1	4.60576	3.409761	2.388057	
9	1	2.602732	2.116804	1.546638	
10	1	7.316954	0.54555	0.641376	
11	6	3.623342	-1.31474	-0.56852	
12	6	3.1773	-2.40807	-1.27575	
13	6	4.150342	-3.29549	-1.80317	
14	6	5.542867	-3.06754	-1.60997	
15	6	6.011517	-1.97942	-0.91453	
16	6	5.053224	-1.04413	-0.36692	
17	1	2.119524	-2.58654	-1.43541	
18	1	3.826029	-4.16394	-2.36758	
19	1	6.248982	-3.77937	-2.0302	
20	1	7.07449	-1.81126	-0.77497	
21	7	2.917046	-0.28395	0.038193	
22	6	1.500912	-0.16832	0.094207	
23	6	0.739351	-1.21181	0.657776	
24	6	0.873416	0.973038	-0.40798	
25	6	-0.64821	-1.1376	0.727875	
26	1	1.25386	-2.08524	1.04482	
27	6	-0.51801	1.073706	-0.32833	
28	1	1.468028	1.759781	-0.86159	
29	6	-1.26939	0.01734	0.245491	
30	1	-1.22079	-1.95608	1.151067	
31	6	-1.46554	2.08106	-0.75865	
32	7	-2.63021	0.341551	0.181213	
33	6	-2.75683	1.598275	-0.43144	
34	6	-1.32986	3.332581	-1.37075	
35	6	-3.90587	2.351769	-0.68407	
36	6	-2.47147	4.081407	-1.63895	
37	1	-0.34572	3.714537	-1.62867	
38	6	-3.74358	3.594236	-1.29357	
39	1	-4.89233	1.991029	-0.4125	
40	1	-2.38048	5.053047	-2.11544	
41	1	-4.62248	4.197485	-1.50298	
42	6	-3.69586	-0.46481	0.650975	

43	6	-4.75184	-0.79524	-0.20353
44	6	-3.69732	-0.93553	1.971946
45	6	-5.81065	-1.58419	0.270423
46	6	-4.74178	-1.73864	2.429254
47	1	-2.88523	-0.65782	2.636002
48	6	-5.80475	-2.06389	1.59045
49	1	-4.7331	-2.09906	3.453465
50	1	-6.62552	-2.67897	1.943505
51	1	-4.74741	-0.45157	-1.23185
52	6	-6.89742	-1.91366	-0.60709
53	7	-7.78073	-2.17995	-1.31528

The geometry of pCzBN in singlet excited state				
1	С	6.013034	1.759418	1.608452
2	C	4.744361	2.313916	1.808174
3	C	3.59735	1.689313	1.32947
4	С	3.755716	0.497868	0.624072
5	С	5.023471	-0.08885	0.446901
6	C	6.15852	0.550547	0.937281
7	Н	6.889118	2.270315	1.995816
8	Н	4.646814	3.245696	2.357121
9	Н	2.619055	2.11308	1.5251
10	Н	7.140727	0.105168	0.80709
11	С	3.433792	-1.49126	-0.45099
12	С	2.910287	-2.57156	-1.15778
13	С	3.801264	-3.53914	-1.61082
14	С	5.176768	-3.42837	-1.38096
15	С	5.694075	-2.32962	-0.70449
16	С	4.819047	-1.35107	-0.24116
17	Н	1.85124	-2.65918	-1.37092
18	Н	3.416209	-4.39363	-2.1589
19	Н	5.845829	-4.20141	-1.74605
20	Н	6.764443	-2.22994	-0.54808
21	N	2.778054	-0.35723	0.074353
22	С	1.409405	-0.11798	0.045107
23	С	0.504611	-1.17247	0.319513
24	С	0.935501	1.180788	-0.26731
25	С	-0.85669	-0.96793	0.290699
26	Н	0.900911	-2.13911	0.606563
27	C	-0.41973	1.397703	-0.30828
28	Н	1.643772	1.962257	-0.51943
29	С	-1.31902	0.32124	-0.03098
30	Н	-1.56382	-1.75372	0.526798
31	C	-1.26222	2.551978	-0.60864
32	N	-2.60243	0.743012	-0.13536
33	C	-2.59238	2.100587	-0.48466
34	C	-1.01629	3.871496	-0.9513
35	C	-3.68511	2.927143	-0.69328
36	С	-2.10992	4.720042	-1.16599
37	Н	-0.00196	4.246815	-1.05578
38	С	-3.41885	4.254265	-1.0387
39	Н	-4.69199	2.539986	-0.5874
40	Н	-1.93415	5.756398	-1.43751

41	Н	-4.24726	4.934336	-1.21146
42	С	-3.76958	-0.06459	0.065287
43	С	-4.21488	-0.91799	-0.99405
44	С	-4.22198	-0.31224	1.400654
45	С	-5.13135	-1.89939	-0.74219
46	С	-5.13826	-1.29698	1.6403
47	Н	-3.85217	0.303321	2.216445
48	С	-5.63768	-2.12823	0.581661
49	Н	-5.50701	-1.45787	2.648936
50	Н	-3.83966	-0.76341	-2.00229
51	Н	-5.49513	-2.52062	-1.55517
52	С	-6.57371	-3.14433	0.83572
53	N	-7.35309	-3.99213	1.047442

The geometry of pCzBN in triplet excited state				
1	6	5.990975	1.706815	1.969016
2	6	4.683371	2.169893	2.191161
3	6	3.58338	1.551319	1.599738
4	6	3.823502	0.454545	0.767369
5	6	5.13495	-0.03636	0.547039
6	6	6.221937	0.602203	1.153372
7	1	6.827075	2.211844	2.443995
8	1	4.521704	3.025408	2.841152
9	1	2.576229	1.906534	1.79026
10	1	7.232771	0.236307	0.993888
11	6	3.631756	-1.36168	-0.58827
12	6	3.171443	-2.37287	-1.43601
13	6	4.116282	-3.23361	-1.99164
14	6	5.487044	-3.09072	-1.71929
15	6	5.941018	-2.07005	-0.88837
16	6	5.012872	-1.19226	-0.31789
17	1	2.116796	-2.48344	-1.6642
18	1	3.781777	-4.02888	-2.65203
19	1	6.197713	-3.77959	-2.16664
20	1	7.002925	-1.95189	-0.68959
21	7	2.911803	-0.35652	0.075579
22	6	1.508106	-0.17962	0.041077
23	6	0.656134	-1.26383	0.33666
24	6	0.969414	1.0689	-0.30606
25	6	-0.72741	-1.12768	0.29833
26	1	1.094848	-2.21924	0.603457
27	6	-0.41213	1.226588	-0.32422
28	1	1.631754	1.882492	-0.58366
29	6	-1.25622	0.132252	-0.00312
30	1	-1.36882	-1.97746	0.5
31	6	-1.27983	2.337636	-0.67453
32	7	-2.59581	0.526497	-0.12406
33	6	-2.61126	1.876416	-0.53165
34	6	-1.04214	3.658433	-1.05378
35	6	-3.7057	2.725347	-0.71499
36	6	-2.13161	4.502317	-1.27813
37	1	-0.02659	4.028759	-1.16356
38	6	-3.44481	4.039628	-1.10281

39	1	-4.7207	2.384179	-0.54778
40	1	-1.9612	5.532311	-1.57694
41	1	-4.27738	4.719182	-1.25953
42	6	-3.71336	-0.26762	0.125332
43	6	-4.83764	-0.27254	-0.79465
44	6	-3.77139	-1.11308	1.304127
45	6	-5.91571	-1.06272	-0.57033
46	6	-4.85698	-1.8851	1.55404
47	1	-2.96067	-1.06291	2.024231
48	6	-5.99	-1.91092	0.622989
49	1	-4.91815	-2.47979	2.459257
50	1	-4.7709	0.313781	-1.70552
51	1	-6.73417	-1.09828	-1.28148
52	6	-7.09846	-2.71183	0.865172
53	7	-8.0403	-3.39259	1.070862

The degradation profile of singlet excited state

Figure S1. The degradation profiles of singlet and triplet excited states.

Figure S2. Cyclic voltammetry (CV) data of the hosts.

Figure S3. (a) Thermogravimetric analysis data of oCzBN, mCzBN, pCzBN at a heating rate of 10 °C/min in nitrogen atmosphere. and (b) DSC thermograms of oCzBN, mCzBN, pCzBN at a heating rate of 10 °C/min in nitrogen atmosphere.

Figure S4. Blue PhOLEDs device structure.

Figure S5. Green PhOLEDs device structure

Name	Excited state lifetime	
	(µs)	
oCzBN	1.52	
mCzBN	1.52	
pCzBN	1.52	

Figure S6. Transient PL spectra of the CNIM 5 doped oCzBN, mCzBN and pCzBN film at 5% doping concentration. The data were collected at room temperature.

Figure S7. (a) HOD device structure and (b) EOD device structure