Ion-Assisted Self-Assembly of Macroporous MXene Film as

supercapacitor electrodes

Xuefeng Zhang[§], Xudong Liu[§], Runze Yan, Jianqun Yang , Yong Liu*, Shangli Dong*

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, R.P.

China

E-mail: liuy@hit.edu.cn (Y. Liu).

Methods for calculation of specific capacitance

1. Three-electrode system

CV test

The gravimetric capacitances were calculated according to the following equations:

$$Cg = \frac{\int Idv}{v \times V \times m}$$
(1)
$$C_a = \frac{C_g m}{S}$$
(2)

Where C_g (F g⁻¹) is the specific capacitance of the electrode, I (A) is the charge-discharge current, v(V/s) scan rate, m(g) is the mass of the working electrode. V (V) is voltage window, C_a (mF cm⁻²) is the areal capacitance of the electrode, S (cm²) denotes the area of the electrode.

2. Capacitive contribution

The distinguish and quantify the capacitive contribution to the overall current response, it used the following formula (3):

$$C = K_1 + K_2 V^{-0.5} \qquad (3)$$

Since the current response at a fixed potential is attributed to two separate mechanisms, i.e surface capacitive effects (surface capacitive effects: from EDLC and pseudocapacitance), and intercalation pseudocapacitance (from diffusion-controlled insertion processes), formula (3) demonstrates that the total capacitance *C* on the basis of CV experiment contain scan be divided into a rate-independent component K_1 , and a diffusion-limited component $K_2V^{-0.5}$ that controlled by scanning rate (intercalation pseudocapacitance).

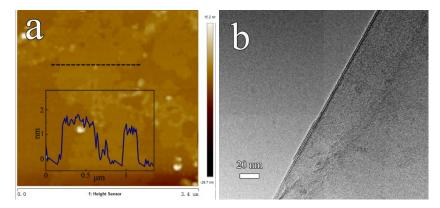


Fig.S1 TEM and AFM image of as-prepared $Ti_3C_2T_x$ nanosheets and (a) TEM image, (b)AFM images

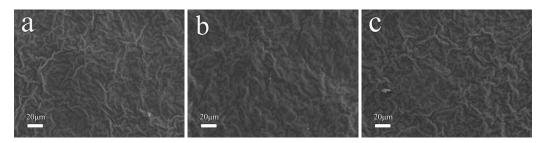


Fig.S2 Top-view SEM images of (a) $Ti_3C_2T_x$ -A, (a) $Ti_3C_2T_x$ -H and $Ti_3C_2T_x$ -K

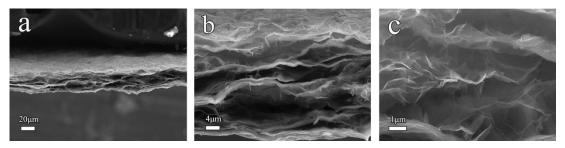


Fig.S3 (a) , (b) and (c) Cross-sectional SEM images of $\mathrm{Ti}_3\mathrm{C}_2\mathrm{T}_x\text{-}\mathrm{H}$

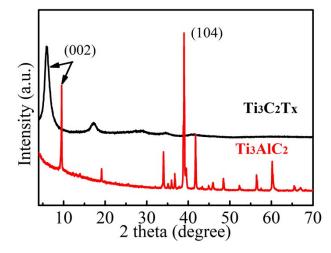


Fig.S4 XRD patterns of $Ti_3AlC_2T_x$ and $Ti_3C_2T_x$

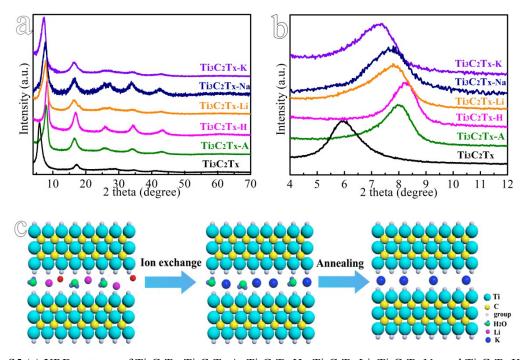


Fig.S5 (a) XRD patterns of $Ti_3C_2T_x$, $Ti_3C_2T_x$ -A, $Ti_3C_2T_x$ -H, $Ti_3C_2T_x$ -Li, $Ti_3C_2T_x$ -Na and $Ti_3C_2T_x$ -K, (b) detailed XRD patterns showing (002) peaks, (c)A schematic illustration of the change of interlayer spacing.

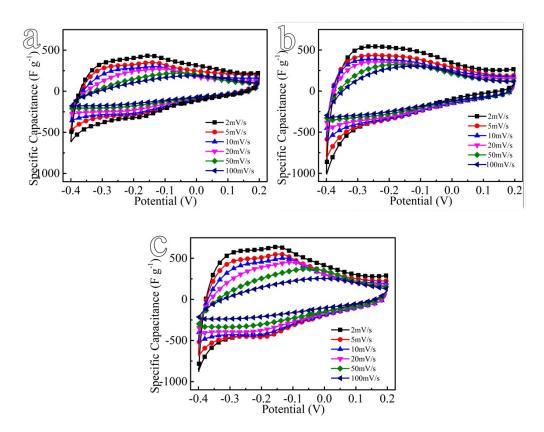


Fig.S6 CV curves at various scan rates for (a) $Ti_3C_2T_x$ -A, (b) $Ti_3C_2T_x$ -H and (c) $Ti_3C_2T_x$ -K

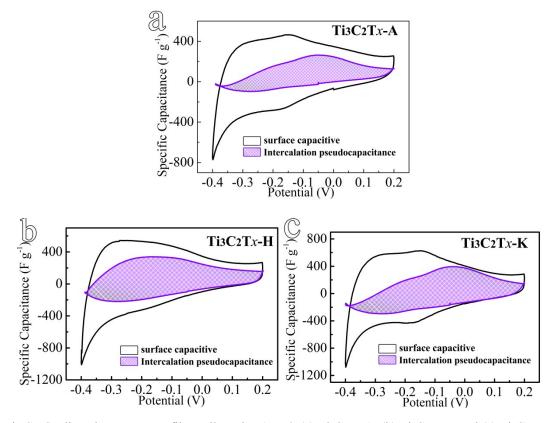


Fig.S7 Cyclic voltammetry profiles collected at 1mV/s (a) $Ti_3C_2T_x$ -A, (b) $Ti_3C_2T_x$ -H and (c) $Ti_3C_2T_x$ -K

Table S1 EDS result of the Ti_3AlC_2 , $Ti_3C_2T_x$ -A, $Ti_3C_2T_x$ -H and $Ti_3C_2T_x$ -K

		5	- 23 5-2	x 9 5-2	A	- 2 A	
Element (at.%)	Ti	С	0	F	Al	Cl	K
Ti3AlC2	47.7	37.1	-	-	15.2	-	-
$Ti_3C_2T_x$ -A	38.2	30	18.5	11.6	-	1.7	-
$Ti_3C_2T_x$ -H	35	29.8	20.5	12.1	-	2.6	-
$Ti_3C_2T_x$ -K	34.1	31	19.4	11	-	3	1.5

Electrodes	Electrolyte	Mass loading (mg cm ⁻ ²)	Scan rate or current density	Specific capacitance (F g ⁻¹)	Areal capacitance (F cm ⁻²)	Ref.
$Ti_3C_2T_x$	1M KOH	15	2 mV s ⁻¹	67	1012	10
Aerogel						
$Ti_3C_2T_x / CF$	$1 M H_2 SO_4$	2.6	10 mV s ⁻¹	200	416	31
$Ti_3C_2T_x$	1M KOH	7.6	2mV s ⁻¹	78	579	32
$Ti_3C_2T_x/Ag$	1M Na ₂ SO ₄	15	5mA cm ⁻²	78	1173	33
NP film						
$Ti_3C_2T_x$ @Al	$0.5M Na_2 SO_4$	20	1m A cm ⁻²	54	1087	34
RGO/MnO_2	1M Na ₂ SO ₄	3.7	0.1 A g-1	243	897	35
hybrid paper						
$Ti_3C_2T_x/NF$	1M KOH	4.8	5mV s ⁻¹	115	246	36
RGo/Ni foam	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	3.5	0.5 m A cm ⁻²	-	323	37
$Ti_3C_2T_x$ -A	$1M H_2SO_4$	2.5	2mV s ⁻¹	307	768	this work
$Ti_3C_2T_x$ -H	$1M H_2SO_4$	2.5	2mV s ⁻¹	374	935	this work
$Ti_3C_2T_x$ -K	$1M H_2SO_4$	2.4	2mV s ⁻¹	425	1025	this work

Table S2 Comparison of specific capacitance for different electrode materials