Supporting Information

Achieving High-Performance, Self-Powered, Broadband Perovskite Photodetector Employing MAPbI₃ Microcrystal Films

Xiyan Pan, Hai Zhou,^{*} Ronghuan Liu, Dingjun Wu, Zehao Song, Xiaomin Tang, Xiaohan Yang, Hao Wang^{*}

[†]Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science, Hubei University, Wuhan, 430062, P.R. China.

Corresponding Author A/Prof. Hai Zhou:<u>hizhou@hubu.edu.cn</u> Prof. Hao Wang: <u>wangh@hubu.edu.cn</u>

Figure S1 The photograph of $MAPb(I_xBr_{1-x})_3(x = 0, 0.2, 0.4, 0.6, 0.8, 1)$ MC Films

Figure S2 The MC films with the thickness of about (a) 10 $\mu m,$ (b) 15 $\mu m,$ (c) 25 μm and (d) 40 $\mu m.$

Figure S3 Light absorption curves of the MAPbI₃MC films with different thicknesses.

Figure S4 (a) SEM top view of the MAPbI₃ MCs. (b) UV-visible absorption spectrum of the MAPbI₃ MCs. (c) I-V curve of the MAPbI₃ MCs with FTO/MAPbI₃/FTO structure at dark.

Figure S5 Energy band diagram of the perovskite MC PD.

Figure S6 External quantum efficiency (EQE) of MAPbI₃ MCs thin film PD with different thickness at 0 V.

Figure S7 I-t curves of MAPbI₃ MCs thin film PD at different frequencies.

Figure S8 The AFM images of MAPbI₃ MC film.

Figure S9 The device performance of metal-semiconductor-metal (MSM) structure
PDs. (a) I-V curves of the MAPbI₃ MCPD; (b)I-V curves of the MAPbI_{2.4}Br_{0.8} MCPD;
(c) long-time I-t curves of the MAPbI₃ MCPD; (d)long-time I-t curves of the MAPbI_{2.4}Br_{0.8} MCPD.

Figure S9 shows the device performance of metal-semiconductor-metal (MSM) structure perovskite MC PDs. Figure S9a and S9b display the dark- and photocurrent curves of the device under 473 nm laser irradiation with the light intensity of 440 mW cm⁻². It can be seen that both of the MAPbI₃ and MAPbI_{2.4}Br_{0.8} MCPD show superior photoelectric response performance with the on/off ratio of about 10⁴ at 4V, showing high switching characteristic. In addition, from the long-time I-t curves of the MAPbI₃ and MAPbI_{2.4}Br_{0.8} MCPD, we can see the photocurrent of both of the devices has almost no attenuation, indicating that our MCPDs show excellent light stability.