Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Environmentally-benign NaNbO₃ based perovskite antiferroelectric alternative to traditional lead-based counterpart

Aiwen Xie^a, He Qi^a, Ruzhong Zuo^{*a}, Ao Tian^a, Jun Chen^a and Shujun Zhang^{*b}

^aInstitute of Electro Ceramics & Devices, School of Materials Science and Engineering, Hefei

University of Technology, Hefei, 230009, P.R. China

^bInstitute for Superconducting and Electronic Materials, Australian Institute of Innovative

Materials, University of Wollongong, NSW 2500, Australia

*Correspondence to: piezolab@hfut.edu.cn (R.Z. Zuo), shujun@uow.edu.au (S.J. Zhang)

Fig. S1. The dielectric permittivity (ε_r) and dielectric loss (tan δ) as a function of temperature measured on heating and cooling cycles for (1-x)NN-xST ceramics: (a) x=0, (b) x=0.05, (c)

x=0.15 and (d) x=0.17.

Fig. S2. Raman spectra for (1-x)NN-xST ceramics at various temperatures: (a) x=0.12, (b)

x=0.14 and (c) x=0.16.

Fig. S3. Rietveld refinement plots of the x=0.14 ceramic measured at different temperatures.

Fig. S4. Room-temperature P-E loops and bipolar S-E curves of the (1-x)NN-xST ceramic during different electric field cycles at 10 Hz: (a) x=0, (b) x=0.05, (c) x=0.1, (d) x=0.11, (e) x=0.13, (f) x=0.14, (g) x=0.17 and (h) x=0.2.

Fig. S5. (a) Bright-field TEM image and (b) the SAED patterns of the x=0.12 ceramic.

Table S1. Refined structure parameters by the Rietveld method for x=0.14 ceramic as

T (°C)	Space group	Fraction (%)	Lattice parameters	V (Å ³)	R _{wp} (%)	R _p (%)	χ^2
-160	R3c	54.2	$a=b=c=7.8117(1)$ Å, $\alpha=\beta=\gamma=90.102(5)^{\circ}$	476.698(11)	9.41	7.55	1.78
	Pbma	45.8	a=5.5432(2) Å, b=15.5951(7) Å, c=5.5094(2) Å, α=β=γ=90°	476.284(35)	7.41		
-120	R3c	21.2	$a=b=c=7.8129(5)$ Å, $\alpha=\beta=\gamma=90.057(8)^{\circ}$	476.914(21)	0 33	6.95	1.86
	Pbma	78.8	a=5.5438(2) Å, b=15.5963(7) Å, c=5.5091(2) Å, α=β=γ=90°	476.340(36)	9.55		
-60	Pbma	100	a=5.5430(2) Å, b=15.6023(7) Å, c=5.5123(2) Å, α=β=γ=90°	476.726(36)	8.88	6.72	1.70
-30	Pbma	100	a=5.5441(2) Å, b=15.6147(6) Å, c=5.5160(2) Å, α=β=γ=90°	477.521(33)	8.29	7.09	1.68
0	Pbma	100	a=5.5446(1) Å, b=15.6233(7) Å, c=5.5180(1) Å, α=β=γ=90°	478.010(34)	8.73	6.90	1.74
RT	Pbma	11.5	a=5.5524(1) Å, b=15.6263(2) Å, c=5.5189(1) Å, $\alpha = \beta = \gamma = 90^{\circ}$	478.840(21)	0.00	6.01	1 (1
	Pnma	88.5	a=7.8354(2) Å, b=7.8193(3) Å, c=23.444(9) Å, α=β=γ=90°	1436.398(44)	8.92	6.91	1.61

function of temperature.

RT : room temperature

Table S2. Refined structural parameters of the (1-x)NN-xST ceramic powders at room

temperature.

x	State	Space	Fraction	Lattice parameters	V (Å 3)	R_{wp}	R_p	χ^2
0	Virgin	Phma	86.7	$a=5.5653(3)$ Å $b=15.5550(4)$ Å $c=5.5024(3)$ Å $a=8=y=90^{\circ}$	(A^{*})	(70)	(70)	
		P?.ma	13.3	$a=5.5035(3)$ A, $b=7.7802(3)$ Å, $c=5.5024(3)$ A, $a=p=\gamma=90^{\circ}$	473.313(9) 238 472(7)	8.87	6.43	2.09
0.05	Virgin	Phma	01.1	$a = 5.5608(1)$ Å $b = 15.5802(2)$ Å $c = 5.5010(3)$ Å, $a = \beta = 2 = 90^{\circ}$	177 383(12)	9.33	7.28	2.22
		P2.ma	99	$a = 5.5000(1) \text{ Å}, b = 7.7815(3) \text{ Å}, c = 5.5049(4) \text{ Å}, a = \beta = y = 90^{\circ}$	238 945(9)			
0.10	Virgin	Phma	96.2	$a = 5.5760(2) R, b = 15.6121(2) Å c = 5.5144(1) Å a = \beta = \gamma = 90^{\circ}$	$478\ 210(13)$	9.22	7.66	2.11
		$P_{1}ma$	3.8	$a = 5.5347(1) \text{ Å}$ $b = 7.8021(2) \text{ Å}$ $c = 5.5118(4) \text{ Å}$ $a = \beta = y = 90^{\circ}$	239 997(8)			
0.11	Viroin	Phma	100	$a = 5.5513(1)$ Å $b = 15.625(2)$ Å $c = 5.5164(1)$ Å $a = \beta = \gamma = 90^{\circ}$	478 498(12)	912	7 87	2 09
0.12	Viroin	Phma	100	$a = 5.5510(1)$ Å $b = 15.6261(1)$ Å $c = 5.5170(1)$ Å $a = 8 = y = 90^{\circ}$	478 645(9)	8 30	6 46	1 76
0.12	Virgin	Phma	100	$a=5.5526(1)$ Å $b=15.6265(2)$ Å $c=5.5185(1)$ Å $\alpha=\beta=\gamma=90^{\circ}$	478 826(11)	9.07	6.95	2.03
0.14	Virgin	Phma	11.5	$a=5.5524(1)$ Å $b=15.6263(2)$ Å $c=5.5189(1)$ Å $\alpha=\beta=v=90^{\circ}$	478 840(21)			
		Pnma	88.5	$a = 7.8354(2)$ Å $b = 7.8193(3)$ Å $c = 23.444(9)$ Å $\alpha = \beta = y = 90^{\circ}$	1436 398(44)	8.92	6.91	1.61
0.15	Virgin	Phma	4.0	$a = 5534(3)$ Å $b = 156282(4)$ Å $c = 55190(4)$ Å $a = \beta = \gamma = 90^{\circ}$	478 998(34)			
		Pnma	96.0	$a = 7.8183(1)$ Å $b = 7.8265(1)$ Å $c = 23.4923(8)$ Å $\alpha = \beta = \gamma = 90^{\circ}$	1437 486(53)	9.63	7.35	2.41
0.16	Virgin	Pnma	100	$a=7.8179(3)$ Å, $b=7.8252(1)$ Å, $c=23.5123(9)$ Å, $\alpha=\beta=\gamma=90^{\circ}$	1438.397(42)	9.52	7.34	2.30
0.17	Virgin	Pnma	100	$a=7.8290(2)$ Å, $b=7.8289(3)$ Å, $c=23.4790(5)$ Å, $\alpha=\beta=\gamma=90^{\circ}$	1439.082(52)	9.60	7.41	2.21
0.20	Virgin	Pnma	100	$a=7.8422(1)$ Å, $b=7.8327(1)$ Å, $c=23.4814(3)$ Å, $\alpha=\beta=\gamma=90^{\circ}$	1442.354(27)	9.04	7.02	1.43
	0							
0.12	Poled	DJ	100	a=5.5517(1) Å, b=15.6266(1) Å, c=5.5178(1) Å.	478 705(11)	0.16	6 88	1 88
		ΓZΙ	100	$\alpha = \gamma = 90^{\circ}, \beta = 90.048(1)^{\circ}$	478.705(11)	9.10	0.00	1.00
0.16	Poled	Pnma	100	$a=7.8171(2)$ Å, $b=7.8259(1)$ Å, $c=23.5120(8)$ Å, $\alpha=\beta=\gamma=90^{\circ}$	1438.383(38)	9.06	7.00	2.27