Supporting Information (SI) for

Oxygen Vacancy Engineering of Self-Doped SnO_{2-x} Nanocrystals for Ultrasensitive NO₂ Detection

Meng Shao^a, Jiajia Liu^a*, Wenjie Ding^a, Jingyu Wang^a, Fan Dong^b, Jiatao Zhang^a*

^aBeijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

^bResearch Center for Environmental Science & Technology, Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

*Corresponding authors. Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. Tel: +86 10 68918065; Fax: +86 10 68918065. Email addresses: liujiajia@bit.edu.cn (J. Liu), zhangjt@bit.edu.cn (J. Zhang).

Figure S1. Nitrogen adsorption-desorption isotherms of the SnO_2 and SnO_{2-x} (1:2.5) NCs.

Figure S2. XPS survey spectra of SnO_2 and SnO_{2-x} (1:5) and SnO_{2-x} (1:2.5) NCs.

Table 51. Atomic compositions and atomic fatio (0/51) from Ar 5	Table	S1.	Atomic	compositions	and	atomic ratio	(O/Sn) from XPS
---	-------	-----	--------	--------------	-----	--------------	-------	------------

Samples	Atomic compositions (A	Atomic ratio O/Sn	
	Sn 3d	O 1s	
SnO ₂	33.38	66.62	1.996
SnO _{2-x} (1:5)	34.21	65.79	1.923
SnO _{2-x} (1:2.5)	35.63	64.37	1.807

Figure S3. Dynamic response/recover curves of four repeated cycles at NO_2 concentration of 500 ppb.

Figure S4. Time-resolved DRIFS spectra of SnO_{2-x} (1:5). (a: background in 100 ml/min helium at 100 °C; after adsorption of NO₂ (1.5ppm NO₂ in oxygen and helium) at 100 °C for 0.5, 1, 2, 3, 4, 5 min (b, c, d, e, f, g).)

Materials	NO ₂	Operating	Response	Response	Recovery	Reference
	concentration	temperature		Time(s)	Time(s)	
	(ppm)	(°C)				
NiO/SnO ₂	5	250	4	-	-	1
graphene	6	150	10.5	360	780	2
oxide/SnO ₂						
SnO ₂	2	150	14.2	292	228	3
nanowires						
Ni-doped	20	250	90.3	24s	35s	4
SnO ₂						
nanofiber						
Ln-doped	500	150	72	<2s	-	5
SnO ₂						
Sn ²⁺ Self-	0.5	100	70	230	88	This
Doped SnO _{2-x}						work

Table S2. Comparison of other SnO₂-based sensing performance of NO_2

Table S3. Assignment of vibrational frequencies of adsorbed surface products

Surface species description	v_3 (cm ⁻¹)	v_1 (cm ⁻¹)	Refs
NO_2 (gas)	1628, 1595		6
NO_2 (ads)	1390, 1348		6
Free NO ₃ ⁻ ion	1380		7
Monodentate nitrate	1530-1480 1290-1250	1035-970	7
$(M - O - NO_2)$	1500-1045 1305-1270	1025-990	8
Bidentate nitrate	1565-1500 1300-1260	1040-1010	7
$(M - O_2 NO)$	1630-1475 1300-1160	1040-960	8
	1545-1580 1280	1045	9
Bridging nitrate	1650-1600 1225-1170	1030-1000	7
$((M-O)_2 = NO)$	1520 1290	1008	8
Free NO ₂ - ion	1260	1330	7
Bridging bidentate nitrite $((M-O)_2=N)$	1230-1200	~1330	10,11
Nitro compound $(M-NO_2)$	1440-1335	1350-1315	7
Monodentate nitrite	~1479		10
(M - O - N - O)	\sim 1463		11
Chelating nitro compound	1520-1390	1260-1180	7
(M-O	1510	1175	9
M-N-O			

following the absorption of NO₂ on SnO₂ NCs.

REFERENCE

- 1. J. K. Wang, K. T. Liao, W. J. Tseng, Ceram. Int., 2017, 43, S541-S546.
- 2. J. Guo, X. Liu, H. Wang, W. Sun, J. Sun, Mater. Lett., 2017, 209, 102-105.
- 3. Y. J. Kwon, S. Y. Kang, P. Wu, Y. Peng, S. S. Kim, H. W. Kim, ACS Appl. Mater. Inter. 2016, 8, 13646-13658.
- 4. W. T. Li, X. D. Zhang, X. Guo, Sensor. Actuat. B-Chem., 2017, 244, 509-521.
- 5. J. Kaur, R. Kumar, M. Bhatnagar, Sensor. Actuat. B-Chem., 2007, 126, 478-484.
- 6. T. Yoshida, N. Ogawa, T. Takahashi, J. Electrochem.Soc., 1999, 146, 1106-1110.
- 7. K. I. Hadjiivanov, Catal. Rev., 2000, 42, 71-144.
- 8. E. Leblanc, L. Perier-Camby, G. Thomas, R. Gibert, M. Primet, P. Gelin, *Sensor. Actuat. B-Chem.*, 2000, **62**, 67-72.
- 9. D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today, 2001, 70, 139-154.
- 10. J.Szanyi, J. H. Kwak, R. J. Chimentao, and C. H. F. Peden, *J. Phys. Chem. C*, 2007, **111**, 2661-2669.
- 11. C. Sedlmair, K. Seshan, A. Jentys, and J. A. Lercher, J. Catal., 2003, 214, 308-316.