Highly Sensitive, Selective and Stable NO$_2$ Gas Sensors with PPb-Level Detection Limit on 2D-Platinum Diselenide Films †

Teng-Yu Sua, Yu-Ze Chenb, Yi-Chung Wangc,d, Shin-Yi Tanga, Yu-Chuan Shiha, Faliang Chengc, Zhiming M. Wangd, Heh-Nan Lina, Yu-Lun Chueh*a,e,f

a. Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
b. Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
c. Dongguan University of Technology, Dongguan, 523808, China
d. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
e. Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
f. Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.

*Corresponding author email address: ylchueh@mx.nthu.edu.tw

Figure S1 XPS result of 300 °C, 450 °C and 600 °C. Pt 4f spectra for (a) 300 °C (b) 450 °C and (c) 600 °C. and Se 3d spectra (d) 300 °C (e) 450 °C and (f) 600 °C.
Figure S2. Schematic setup of gas sensing measurement system.
Figure S3. The gas sensing response of PtSe$_2$ fabricated at 450 °C with and without UV illumination.
Figure S4 Real time NO$_2$ response of PtSe$_2$ fabricated at 450 ºC and the NO$_2$ concentration ranged from 50 ppb to 1 ppm at (a) 5 L, (b) 7 L, and (c) 10 L.
Calculation of noise level (RMS) and limit of detection (LOD)
1. Execute the linear fitting for plot of response versus NO$_2$ concentration and then extract the slope (sensitivity) and standard error in the linear region shown in figure S4(a) to (c)
2. Take 11 data points at the baseline before NO$_2$ response and execute the polynomial fit (5th order) shown in figure S4(d) to (f).
3. Take the regular residual of (Y_i-Y_{fit}) of polynomial fit and calculate the root-mean squared deviation (RMS) and the LOD with the equation S1 and S2.

$$\text{RMS (ppm}^{-1}) = \sqrt{\frac{\sum V_i}{N-1}}$$

where $V_i = \sum (Y_i - Y_{fit})$

Limit of detection (ppm) = 3RMS/slope(sensitivity).

Figure S5 (a) to (c) the linear fit of the plot of the response versus concentration with 5, 7 and 10 layers. (d) to (f) 5th order polynomial fit of 11 points before gas purging in with 5, 7 and 10 layers.
Figure S6 (a) Real time NO$_2$ response of PtSe$_2$ fabricated at 450 °C with 7 layers and the NO$_2$ concentration ranged from 1 ppm to 50 ppb. (b) and (c) the cycling response of 1 ppm and 50 ppb with 5 cycles.
Figure S7. PtSe$_2$ sensing performance with (a) CO in 1 ppm (b) H$_2$S in 0.5 ppm, and (c) NH$_3$ in 1 ppm.
Figure S8. The cross section TEM image of PtSe$_2$ fabricated at 300 °C, 450 °C and 600 °C in low and high magnification. (a) and (d) are 300 °C, (b) and (e) are 450 °C, (d) and (f) are 600 °C.
Band gap calculation through absorption spectrum and Tauc plot.

1. We can directly measure the absorption spectrum by fabricating PtSe$_2$ on quartz substrate.
2. Calculation the absorptance (α) through $-\log$ (absorption (%))/thickness
3. According to the formula: $(ah\nu)^{1/n} = A(h\nu - E_g)$, where the value n is 2 for indirect band, we can extrapolate the linear region of abscissa.

Figure S9. The absorption spectrum of PtSe$_2$ with different growth temperature in (a) 5 L, (b) 7 L, and (c) 10 L. The Tauc plot of abscissa of PtSe$_2$ with different temperature in (d) 5 L, (e) 7L and (f) 10 L.