Supporting Information

Development of High-Strength, Tough, and Self-Healing Carboxymethyl Guar Gum-Based Hydrogels for Human Motion Detection

Wei Chen^{a,*}, Yunhao Bu^a, Delin Li^a, Yuan Liu^a, Guangxue Chen^b, Xiaofang Wan^b, Nan Li^{a,*}

^a College of Engineering, Qufu Normal University, Rizhao 276826, China
^b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

Figure S1 FT-IR spectra of CMGG powder, PAA-Fe³⁺, and PAA/CMGG_{1.0}-Fe³⁺ hydrogels.

Figure S2 UV-vis spectra of PAA-Fe³⁺, PAA/CMGG_{0.5}-Fe³⁺, PAA/CMGG_{1.0}-Fe³⁺, PAA/CMGG_{1.5}-Fe³⁺, and PAA/CMGG_{2.0}-Fe³⁺ solutions.

Figure S3 a-f) A series of photos showing the progressive decomposition of the $PAA/CMGG_{1.5}$ -Fe³⁺ hydrogel in water.