Supporting information

Zero-dimensional ionic antimony halide inorganic-organic hybrid with strong greenish yellow emission

Fang Lin,^a Hao Wang,^a Wei Liu*^a and Jing Li*^{b,a}

^a Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China

^b Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA

Materials and Characterization

Materials. SbBr₃ (99.9% metals basis) were purchased from Alfa Aesar, 1-carboxymethyl-3-methylimidazolium chloride (98%) were purchased from Merck, acetonitrile (>99%), ethylacetate (EA, AR,99%) were purchased from Aladdin. All reagents and solvents were used without further purification unless otherwise stated.

Synthesis of 1. A mixture of $SbBr_3$ (0.0361 g, 0.1 mmol), 1-carboxymethyl-3methylimidazolium chloride (0.0354 g, 0.2 mmol) in acetonitrile (6mL) and ethylacetate (2 mL) was stirred in 20mL glass bottle for 1 hour to form a white precipitate, and then sealed in a Teflon-lined bomb and heated to a temperature of

120°C for 3 days, then cooled slowly to room temperature. Colorless crystals and white polycrystalline powder were slowly precipitated out from the solution.

Sample Washing and Drying. Upon completion of reactions, powder sample of **1** was collected by filtration from the reaction solution and washed with a small amount of acetonitrile for three times. The sample was then dried in a vacuum oven overnight before other measurements were made.

Single crystal X-ray diffraction (SXRD). Single crystal X-ray diffraction data were collected at 225K on a Bruker D8 Venture diffractometer with graphite-monochromated Ga Kalpha radiation ($\lambda = 1.34139$ Å) The structures were solved by direct methods and refined by full-matrix least-squares on F₂ using the Bruker SHELXTL package.¹ These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_re-quest/cif. The structures were deposited in Cambridge Structural Database (CSD) and the number is 1998894.

Powder X-ray diffraction (PXRD). PXRD analyses were carried out on a Bruker D8 Advance automated diffraction system using Cu K α radiation (λ =1.5406 Å). The data were collected at room temperature in a 2 θ range of 3–50° with a scan speed of 1°/min.

The operating power was 40 kV/40 mA.

Optical diffuse reflectance measurements. Optical diffuse reflectance spectra were measured at room temperature on a Shimadzu UV-3600 spectrophotometer. Data were collected in the wavelength range of 300-1200 nm. BaSO₄ powder was used as a standard (100% reflectance). A similar procedure as previously described was used to collect and convert the data using the Kubelka-Munk function. The scattering coefficient (S) was treated as a constant since the average particle size of the samples used in the measurements was significantly larger than 5 μ m.

Thermogravimetric (TG) analysis. TG analyses of the title compounds were performed on a computer-controlled TG 550 (TA Instrument). Pure powder samples were loaded into platinum pans and heated with a ramp rate of 10 $^{\circ}$ C/min from room temperature to 700 $^{\circ}$ C.

Excitation spectrum measurements. Excitation spectra were measured at room temperature on a FLS1000 spectrofluorometer (Edinburgh Instruments) monitored at maximum of emission spectra.

Photoluminescence measurements. Steady-state photoluminescence spectra were obtained at room temperature and 77 K (liquid nitrogen was used to cool the samples) on a FLS1000 spectrofluorometer.

Internal quantum yield measurements. Internal quantum yield (QY) of samples in powder form was measured on a C9920-03 absolute quantum yield measurement system (Hamamatsu Photonics) with a 150 W xenon monochromatic light source and 3.3 inch integrating sphere.

Time-resolved photoluminescence. Time-Resolved Emission data were collected at room temperature using the FLS1000 spectrofluorometer. The dynamics of emission decay were monitored by using the FLS1000's time-correlated single-photon counting capability (1024 channels; 10 μ s window) with data collection for 10,000 counts. Excitation was provided by an Edinburgh EPL-360 picosecond pulsed diode laser. Long lifetime measurements at 77K (1024 channels; 800 μ s window) were collected using Xe flash lamp as the excitation source. The lifetime was obtained by mono-exponential fitting.

Figure S1. Structural plot of the organic ligand.

Figure S2. PXRD patterns of as-made (top) and simulated pattern of compound 1 (bottom).

Figure S3. UV plot of compound 1.

Figure S4. TGA plot of compound 1.

Figure S5. Calculated band structure for 1.

Figure S6. Emission spectra of 1 under various excitation energies.

Figure S7. Emission spectra of 1 (black), SbBr₃ (blue), and the organic ligand (red). λ_{ex} =360nm.

Figure S8. Emission spectra of 1 under various temperatures. λ_{ex} =360nm.

Figure S9. Luminescence decay curve at room temperature of compound 1.

Compound	$H_3SbBr_6(L)_6$
Formula	$Br_6C_{36}H_{51}N_{12}O_{12}Sb$
Fw	1445.10
Space Group	<i>R</i> -3
<i>a</i> (Å)	22.2753(9)
<i>b</i> (Å)	22.2753(9)
<i>c</i> (Å)	8.6405(4)
α (°)	90
β (°)	90
γ (°)	120
V(Å3)	3712.9(3)
Z	3
<i>T</i> (K)	225(2)
λ (Å)	1.34139
ρ (g·cm ⁻³)	1.939
$R_1^a \left[I > 2\sigma(I)\right]$	0.0540
$wR_2^a[I > 2\sigma(I)]$	0.1649
R_1^a (all data)	0.0542
wR_2^a (all data)	0.1650

Table S1. Single crystal X-ray diffraction data of compound 1

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

Table S2. Elemental analysis of compound 1.

Compound		С %	Н %	N %
1	Calculated	29.9	3.5	11.6
	Experimental	29.5	3.3	11.5

Compounds	λ _{ex}	λ_{em}	Emission color	IQY(%)
	(nm)	(nm)		
[Bmim] ₂ SbCl ₅ ²	370	583	Yellow	86.5
(C ₉ NH ₂₀) ₂ SbCl ₅ ³	380	590	Orange	98
[4-methylpiperidinium] ₂ SbCl ₅ ⁴	373		White	1
$(Ph_4P)_2SbCl_5^5$	365	648	Red	87
[Bzmim] ₃ SbCl ₆ ⁶	365	525	Green	87.5
[Bzmim] ₂ SbCl ₅ ⁶	310	483	Blue	
	375	600	Red	22.3
	370	625	Red	86
$(TTA)_2SbCl_5^7$	300	465,	White	68
		625		
	360	590	Yellow	98
$(TEBA)_2SbCl_5^7$	300	450,	Yellow	72
		590		
1	360	530	Greenish yellow	55

Table S3. A summary of recent reported luminescent Sb based hybrid structures

References:

- 1. G. M. Sheldrick, Acta Crystallogr. C Struct. Chem., 2015, 71, 3-8.
- 2. Z.-P. Wang, J.-Y. Wang, J.-R. Li, M.-L. Feng, G.-D. Zou and X.-Y. Huang, *Chem. Commun.*, 2015, **51**,

3094-3097.

- 3. C. Xi, Q. Chengjun, D. Wei, L. Jingwen, M. Xiaoming, Z. Yulu, L. Tao, T. Xiaoma, C. Hongmei and
- O. Yifang, J. Phys. D: Appl. Phys., 2018, 51, 405103.
- 4. A. Khan, A. Zeb, L. Li, W. Zhang, Z. Sun, Y. Wang and J. Luo, J. Mater. Chem. C, 2018, 6, 2801-2805.
- 5. C. Zhou, M. Worku, J. Neu, H. Lin, Y. Tian, S. Lee, Y. Zhou, D. Han, S. Chen, A. Hao, P. I. Djurovich,

T. Siegrist, M.-H. Du and B. Ma, Chem. Mater., 2018, 30, 2374-2378.

6. Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen and X. Huang, 2019, 58, 9974-

9978.

7. Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang and R.-J. Xie, Chem. Mater., 2019, **31**, 9363-9371.