Electronic Supplementary Information

Two-step Phosphorescent Mechanochromism Due to

Intramolecular Deformation

Xu Zhang,* Li-Yi Zhang, Jin-Yun Wang, Feng-Rong Dai and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

	1.4CH ₂ Cl ₂	1.3acetone	1.4THF
empirical formula	$C_{108}H_{99}Cl_9CuNO_4P_6Pt_2$	$C_{113}H_{109}ClCuNO_7P_6Pt_2$	$C_{120}H_{124}ClCuNO_8P_6Pt_2$
formula weight	2433.47	2268.00	2383.19
crystal system	monoclinic	triclinic	monoclinic
space group	C2/c	$P\overline{1}$	$P2_{1}/n$
<i>a</i> (Å)	15.370(5)	15.936(3)	15.2879(18)
<i>b</i> (Å)	26.440(8)	16.420(4)	25.337(3)
<i>c</i> (Å)	25.463(8)	21.180(4)	28.373(4)
α (deg)	90	73.227(3)	90
β (deg)	91.741(5)	84.428(6)	94.403(3)
γ (deg)	90	88.948(6)	90
$V(\text{\AA}^3)$	10343(5)	5280.6(19)	10958(2)
Z	4	2	4
$ ho_{ m calcd}$ (g/cm ⁻³)	1.563	1.426	1.445
μ (mm ⁻¹)	3.279	3.012	2.908
radiation (λ , Å)	0.71073	0.71073	0.71073
temperature (K)	293(2)	293(2)	293(2)
completeness	99.0	99.0	99.6
GOF	1.040	1.104	1.128
R1 $(F_0)^a$	0.0622	0.0464	0.0517
w R2 $(F_0^2)^b$	0.2339	0.1389	0.1978

Table S1. Crystallographic data of Pt_2Cu complex 1 with different solvate molecules.

orbital	energy	MO contribution (%)					
	(eV)	Pt $(s/p/d)$	Cu (s/p/d)	dpmp	decz	$C \equiv CC_6H_5$	
LUMO+9	-1.02	14.57 (40/39/21)	3.20 (53/42/6)	52.01	22.06	8.17	
LUMO+8	-1.09	8.61 (36/47/16)	2.85 (53/37/9)	58.06	26.68	3.80	
LUMO+7	-1.13	15.42 (48/38/14)	1.97 (19/71/10)	76.30	2.76	3.55	
LUMO+5	-1.27	23.35 (68/8/25)	6.44 (82/16/3)	58.03	5.99	6.19	
LUMO+4	-1.29	8.36 (14/49/37)	1.64 (24/52/24)	83.21	2.59	4.20	
LUMO+3	-1.37	20.87 (36/16/48)	6.61 (79/19/3)	63.98	5.33	3.22	
LUMO+2	-1.40	11.54 (45/10/45)	2.69 (58/26/15)	78.39	2.35	5.02	
LUMO+1	-1.64	24.28 (51/25/24)	6.75 (42/52/6)	57.91	3.63	7.42	
LUMO	-1.87	14.07 (14/67/19)	9.13 (58/32/10)	61.22	5.84	9.74	
HOMO	-5.15	5.95 (3/7/90)	0.31 (11/81/9)	5.64	87.04	1.07	
HOMO-1	-5.65	17.15 (8/2/90)	4.50 (46/23/31)	4.93	48.13	25.30	
HOMO-2	-5.73	16.12 (13/3/84)	10.66 (66/10/24)	7.61	36.58	29.04	
HOMO-3	-5.89	22.52 (9/2/90)	18.25 (12/9/79)	11.78	10.55	36.90	
HOMO-5	-6.31	27.63 (5/2/92)	13.73 (11/4/85)	13.37	28.03	17.24	

Table S2. Partial Molecular Orbital Compositions (%) in the Ground State for Pt_2Cu Complex 1 in the CH_2Cl_2 Solution by TD-DFT Method at the B3LYP Level.

Table S3. The Absorption Transitions for Pt_2Cu Complex 1 in the CH_2Cl_2 Solution by TD-DFT Method at the B3LYP Level.

state	<i>E</i> , nm (eV)	O.S.	transition (contri.)	assignment	exp. (nm)
S_1	448 (2.77)	0.0036	HOMO→LUMO (95%)	¹ LLCT/ ¹ LMCT	
\mathbf{S}_2	409 (3.03)	0.0223	HOMO→LUMO+1 (92%)	¹ LLCT/ ¹ LMCT	405
S ₃	384 (3.23)	0.0700	HOMO-1→LUMO (63%)	¹ LLCT/ ¹ MC	372
			HOMO-3→LUMO (13%)	¹ LLCT/ ¹ MC/ ¹ MLCT/ ¹ IL	
			HOMO→LUMO+3 (10%)	¹ LLCT/ ¹ LMCT	
S_8	364 (3.41)	0.0668	HOMO→LUMO+4 (44%)	¹ LLCT	
			HOMO→LUMO+5 (34%)	¹ LLCT/ ¹ LMCT	
S_{10}	357 (3.48)	0.0831	HOMO-1→LUMO+1 (45%)	¹ LLCT/ ¹ MC/ ¹ LMCT	356
			HOMO-2→LUMO+1 (20%)	¹ LLCT/ ¹ MC	
			HOMO-2→LUMO (10%)	¹ LLCT/ ¹ MC	
			HOMO→LUMO+5 (9%)	¹ LLCT/ ¹ LMCT	
S ₁₂	349 (3.56)	0.1377	HOMO-2→LUMO+1 (35%)	¹ LLCT/ ¹ MC	
			HOMO→LUMO+9 (14%)	¹ LLCT/ ¹ IL/ ¹ LMCT	
			HOMO-1→LUMO+1 (12%)	¹ LLCT/ ¹ MC/ ¹ LMCT	
S ₁₃	345 (3.60)	0.1938	HOMO→LUMO+8 (30%)	¹ LLCT/ ¹ IL	
			HOMO→LUMO+7 (14%)	¹ LLCT/ ¹ LMCT	
			HOMO-3→LUMO+1 (13%)	¹ MC/ ¹ LLCT/ ¹ IL/ ¹ MLCT	
			HOMO-2→LUMO+1 (9%)	¹ LLCT/ ¹ MC	
S ₂₄	322 (3.85)	0.1376	HOMO-3→LUMO+2 (28%)	¹ LLCT/ ¹ MLCT/ ¹ MC/ ¹ IL	312
			HOMO-5→LUMO+1 (11%)	¹ LLCT/ ¹ MC/ ¹ IL/ ¹ MLCT	

Table S4. Partial Molecular Orbital Compositions (%) and Emission Transition in the Lowest Triplet State for Pt₂Cu Complex **1** in the CH₂Cl₂ Solution by TD-DFT Method at the B3LYP Level.

orbi	tal	energy (e	eV)	MO contribution (%)					
				Pt $(s/p/d)$	Cu (s/p/d)		dpmp	decz	$C \equiv CC_6H_5$
LUN	ОМ	-2.44		26.44 (41/19/40)	4.75 (48/42	2/10)	55.03	6.69	7.09
HOI	MO	-4.98		7.51 (4/12/85)	0.65 (2/90/	/8)	4.66	85.99	1.19
state	<i>E</i> , nm	(eV)	O.S.	transition (Contr	i.)	assigni	ment	exp. ((nm)
T_1	649 (1.91)	0.0000	HOMO→LUMO	D (89%)	³ LLCT	C/3LMCT	672	

Table S5. Partial Molecular Orbital Compositions (%) in the Lowest Triplet State for 1.4THF, 1.3acetone and 1.4CH₂Cl₂ by TD-DFT Method at the B3LYP Level.

orbital	energy (eV)	MO contribution (%)						
		Pt $(s/p/d)$	Cu (s/p/d)	dpmp	decz	$C \equiv CC_6H_5$		
			$1 \cdot 4 \text{THF}$					
LUMO	-3.20	17.99 (41/49/10)	9.87 (37/52/11)	65.55	3.78	2.81		
HOMO	-6.33	6.51 (7/13/79)	0.31 (19/59/22)	5.24	86.54	1.40		
1.3acetone								
LUMO	-3.43	28.80 (57/27/16)	9.55 (21/75/4)	52.09	4.95	4.61		
HOMO	-6.36	5.97 (4/15/81)	0.59 (50/44/6)	4.17	88.25	1.03		
$1.4CH_2Cl_2$								
LUMO	-3.41	10.64 (6/83/12)	12.83 (68/21/11)	70.68	4.16	1.69		
НОМО	-6.21	5.18 (2/4/94)	0.25 (0/85/15)	7.28	85.94	1.35		

Table S6. The Emission Transitions for 1.4THF, 1.3acetone and 1.4CH₂Cl₂ by TD-DFT Method at the B3LYP Level.

state	<i>E</i> , nm (eV)	O.S.	transition (contri.)	assignment	exp. (nm)
1·4THF	491 (2.52)	0.0000	HOMO→LUMO (80%)	³ LLCT/ ³ LMCT	525
1.3acetone	518 (2.39)	0.0000	HOMO→LUMO (95%)	³ LLCT/ ³ LMCT	556
$1.4CH_2Cl_2$	560 (2.22)	0.0000	HOMO→LUMO (93%)	³ LLCT/ ³ LMCT	630

Fig. S1. High-resolution mass spectrometry of PtCu₂ complex 1.

Fig. S2. High-resolution mass spectrometry of PtCu₂ complex **1**. Inset: The measured and simulated isotopic patterns.

Fig. S3. The ¹H NMR spectrum of precursor complex $Pt_2(PPh_3)_4(\mu-decz)(C \equiv CPh)_2$ in CD_2Cl_2 solution at ambient temperature.

Fig. S4. The ³¹P{¹H} NMR spectrum of precursor complex $Pt_2(PPh_3)_4(\mu-decz)(C \equiv CPh)_2$ in CDCl₃ solution at ambient temperature.

Fig. S5. The ¹H NMR spectrum of Pt₂Cu complex 1 in CD₂Cl₂ solution at ambient temperature.

Fig. S6. The ${}^{31}P{}^{1}H$ NMR spectrum of Pt₂Cu complex 1 in CD₂Cl₂ solution at ambient temperature.

Fig. S7. The polts of thermogravimetric analyses of 1.4THF, desolvated and ground species.

Fig. S8. The polts of thermogravimetric analyses of 1.3 acetone, desolvated and ground species.

Fig. S9. The polts of thermogravimetric analyses of 1.4CH₂Cl₂, desolvated and ground species.

Fig. S10. The emission spectra of complex 1 in argon-bubbled and oxygen-bubbled CH₂Cl₂ solution.

Fig. S11. The emission spectra of complex 1 in various solvent solution.

Fig. S12. The emission spectra of complex 1 in various states at 298K and 77K.

Fig. S13. UV-vis spectra of complex 1 in various solvent solution at 298K.

Fig. S14. Plot of molecular stacking in 1.4THF, showing weak intermolecular contacts.

Fig. S15. Plot of molecular stacking in 1.3acetone, showing weak intermolecular contacts.

Fig. S16. Plot of molecular stacking in 1.4CH₂Cl₂, showing weak intermolecular contacts.

Fig. S17. The transition orbital distribution in the lowest singlet and triplet states for Pt_2Cu complex **1** in CH_2Cl_2 by TD-DFT method at the B3LYP level (isovalue = 0.0006). The blue-green represents electron depletion (ED) region, and the purple stands for electron accumulation (EA) region. For clarity, the hydrogen atoms are omitted.

Fig. S18. The changes of X-ray diffraction (XRD) patterns for crystalline morp **1**·4THF and the corresponding desolvated species in response to mechanical grinding, showing reversible reversion to the crystalline state upon recrystallization in THF.

Fig. S19. The changes of X-ray diffraction (XRD) patterns for crystalline morp 1.3acetone and the corresponding desolvated species in response to mechanical grinding, showing reversible reversion to the crystalline state upon recrystallization in acetone.

Fig. S20. The changes of X-ray diffraction (XRD) patterns for crystalline morp $1.4CH_2Cl_2$ and the corresponding desolvated species in response to mechanical grinding, showing reversible reversion to the crystalline state upon recrystallization in CH_2Cl_2 .

Fig. S21. The decay curve of crystal sample of 1.4THF.

Fig. S22. The decay curve of desolvated sample of 1.4THF.

Fig. S23. The decay curve of ground sample of 1.4THF.

Fig. S24. The decay curve of crystal sample of 1.3 acetone.

Fig. S25. The decay curve of desolvated sample of 1.3 acetone.

Fig. S26. The decay curve of ground sample of 1.3 acetone.

Fig. S27. The decay curve of crystal sample of 1.4CH₂Cl₂.

Fig. S28. The decay curve of desolvated sample of $1.4CH_2Cl_2$.

Fig. S29. The decay curve of ground sample of 1.4CH₂Cl₂.

Fig. S30. The emission spectra of PMMA film doped with 3% complex **1** for three pressing-restoring cycles.