Supporting information

Rational Design of Efficient Orange-Red to Red Thermally Activated Delayed Fluorescence Emitters for OLEDs with External Quantum Efficiency up to 26.0% and Reduced Efficiency Roll-off

Jixiong Liang, Chenglong Li,* Yuanyuan Cui, Zhiqiang Li, Jiaxuan Wang, and Yue Wang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China

Table of Contents

- 1. General Information
- 2. Single Crystal X-Ray Crystallography and X-ray data of PXZ-PQM
- 3. Theoretical Calculations
- 4. Device Fabrication and Measurement
- 5. Calculation Formulas
- 6. Figures S1-S9
- 7. Tables S1-S2
- 8. Spectra data
- 9. References

1. General Information

¹H NMR spectra were measured on Varian Mercury 500 MHz spectrometer. Mass spectrum was recorded on a GC/MS mass spectrometer. Elemental analyses were performed on a flash EA 1112 spectrometer. UV-vis absorption spectra were recorded by a Shimadzu UV-2550 spectrophotometer. The emission spectra were recorded by a Shimadzu RF-5301 PC spectrometer. The absolute fluorescence quantum yields of doped films were measured on Edinburgh FLS920 steady state fluorimeter. Thermogravimetric analyses (TGA) were carried out on a TA Q500 thermogravimeter by measuring their weight loss while heating at a rate of 10 °C min⁻¹ from 25 to 800 °C under nitrogen. Differential scanning calorimetric (DSC) measurements were performed on a NETZSCH DSC204 instrument at a heating rate of 10 °C min⁻¹ from 20 to 450 °C under a nitrogen atmosphere. Electrochemical measurements were performed with a BAS 100W Bioanalytical electrochemical work station, using Pt as working electrode, platinum wire as auxiliary electrode, and a porous glass wick Ag/Ag⁺ as pseudo-reference electrode, standardized against ferrocene/ferrocenium. The oxidation and reduction potentials of PXZ-**PQM**, **DPXZ-PQM** and **DPXZ-DPPM** were measured in CH₂Cl₂ and DMF solution containing 0.1 M of n-Bu₄NPF₆ as a supporting electrolyte at a scan rate of 100 mV s⁻¹.

2. Single Crystal X-Ray Crystallography

Diffraction data were collected on a Rigaku RAXIS-PRID diffractometer using the ω -scan mode with graphite-monochromator Mo•K α radiation. The structure was solved with direct methods using the SHELXTL programs and refined with fullmatrix least-squares on F². Non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and refined isotropically. The corresponding CCDC reference number (CCDC: 1943981) and the

data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

3. Theoretical Calculations

The ground state geometries were fully optimized by the density functional theory (DFT).^[S1] The lowest singlet excited state (S_1) and the lowest triplet excited state (T_1) were calculated by time-dependent DFT (TDDFT).^[S2] All the above calculations were carried out at the B3LYP/6-31G (d) level by using the Gaussian 16, Revision A.03 software package.^[S3]

4. Device Fabrication and Measurement

TAPC, TCTA, DCzDPy and B3PymPm were purchased from Xi'an Polymer Light Technology Corp. Before device fabrication, the ITO glass substrates were pre-cleaned carefully and treated by oxygen plasma for 3 min. Then the sample was transferred to the deposition system. The devices were prepared in vacuum at a pressure of 5×10^{-4} Pa. The organic materials were thermally evaporated at a rate of 1.0 Å s⁻¹. After the organic film deposition, 1 nm of LiF and 100 nm of aluminum were thermally evaporated onto the organic surface. The thicknesses of the organic materials and the cathode layers were controlled using a quartz crystal thickness monitor. The electrical characteristics of the devices were measured with a Keithley 2400 source meter. The EL spectra and luminance of the devices were obtained on a PR655 spectrometer. All the devices fabrication and device characterization steps were carried out at room temperature under ambient laboratory conditions.

5. Calculation Formulas

The calculation formulas for the rate constants of fluorescent (k_F), internal conversion (k_{IC}), inter-system crossing (k_{ISC}), TADF (k_{TADF}) and reverse intersystem crossing (k_{RISC}) are expressed as following list:^[S4]

$$k_{\rm F} = \Phi_{\rm F} / \tau_{\rm F} \tag{S1}$$

$$\Phi = k_{\rm F}/(k_{\rm F} + k_{\rm IC}) \tag{S2}$$

$$\Phi_{\rm F} = k_{\rm F} / (k_{\rm F} + k_{\rm IC} + k_{\rm ISC}) \tag{S3}$$

$$\Phi_{\rm ISC} = k_{\rm ISC} / (k_{\rm F} + k_{\rm IC} + k_{\rm ISC}) \tag{S4}$$

$$k_{\text{TADF}} = \Phi_{\text{TADF}} / (\Phi_{\text{ISC}} \tau_{\text{TADF}})$$
(S5)

$$k_{\rm RISC} = k_{\rm F} \, k_{\rm TADF} \, \Phi_{\rm TADF} / (k_{\rm ISC} \, \Phi_{\rm F}) \tag{S6}$$

6. Figures

Fig. S1 Thermal gravimetric analysis (TGA) of PXZ-PQM, DPXZ-PQM and DPXZ-DPPM.

Fig. S2 Differential scanning calorimetry (DSC) of PXZ-PQM, DPXZ-PQM and DPXZ-DPPM.

Fig. S3 Oxidization and reduction potentials of **PXZ-PQM**, **DPXZ-PQM** and **DPXZ-DPPM**. The oxidation and reduction potentials were measured in DCM and DMF solutions, respectively.

Fig. S4 Fluorescence (FL.) and phosphorescence (Phos.) spectra of PXZ-PQM (a), DPXZ-PQM (b) and DPXZ-DPPM (c) in toluene (10^{-5} M) at 77 K, and FL. and Phos. spectra of DPXZ-DPPM (d) in n-hexane (10^{-5} M) at 77 K.

Fig. S5 The absorption, fluorescence (298 K) and phosphorescence (77 K) spectra of DCzDPy in toluene (10^{-5} M) .

Fig. S6 The PL spectra of **PXZ-PQM**, **DPXZ-PQM** and **DPXZ-DPPM** 5% doped DCzDPy film at room temperature.

Fig. S7 The room temperature transient decay curves of **PXZ-PQM** (a, b), **DPXZ-PQM** (c, d) and **DPXZ-DPPM** (e, f) 5% doped DCzDPy film.

Fig. S8 The device structure and energy level diagram and molecular structures of the materials employed in the devices.

Fig. S9 Current density-voltage-brightness (J-V-L) characteristics of PXZ-PQM, DPXZ-PQM, and DPXZ-DPPM based devices

7. Tables

 Table S1 Crystal data and structure refinement for PXZ-PQM.

Identification code	PXZ-PQM					
Empirical formula	C33 H21 N3 O2					
Formula weight	491.53					
Temperature	100(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	$P2_1/c$					
Unit cell dimensions	$a = 20.1020(15) \text{ Å}$ $a = 90^{\circ}.$					
	b = 13.4448(10) Å	b=98.084(3)°				
	c = 8.9583(6) Å	$g = 90^{\circ}$				
Volume	2397.1(3) Å ³					
Z	4					
Density (calculated)	1.362 Mg/m ³					
Absorption coefficient	0.086 mm ⁻¹					
F(000)	1024					
Crystal size	0.300 x 0.300 x 0.005 mm ³					
Theta range for data collection	2.821 to 25.998°.	2.821 to 25.998°.				
Index ranges	-24<=h<=24, -16<=k<=16, -11<=l<=11					
Reflections collected	59642					
Independent reflections	4697 [R(int) = 0.0496]]				
Completeness to theta = 25.242°	99.9 %					
Absorption correction	None					
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²				
Data / restraints / parameters	4697 / 585 / 343	4697 / 585 / 343				
Goodness-of-fit on F ²	1.007					
Final R indices [I>2sigma(I)]	R1 = 0.0406, WR2 = 0	R1 = 0.0406, $wR2 = 0.1203$				
R indices (all data)	R1 = 0.0524, wR2 = 0	R1 = 0.0524, $wR2 = 0.1297$				
Extinction coefficient	n/a					
Largest diff. peak and hole	0.268 and -0.215 e.Å ⁻³					

Table S2 The transient PL delay data of 5% PXZ-PQM, DPXZ-PQM, and DPXZ-DPPMdoped films at different temperature. $\overline{\tau_d \ [\mu s]^{a}/R_d^{b}}$ Compound $\overline{\tau_d \ [\mu s]^{a}/R_d^{b}}$ PXZ-PQM0.91/7.46%1.00/10.79%2.06/31.95%

DPXZ-DPPM	3.19/50.12%	3.06/62.89%	2.56/63.69%
DPXZ-DPPM	3.19/30.12/0	3.00/02.89/0	2.30/03.09/0

 \overline{a} PL lifetimes of delayed fluorescence (τ_d). b The weighting factors for delayed fluorescence.

Table S3 Summarized transient PL data and rate constants of PXZ-PQM, DPXZ-PQM, and DPXZ-DPPM.

Emitter ^a	PLQY [%] ^b	$arPerta _{ ext{PL}} [\%]^c$	$oldsymbol{\Phi}_{ ext{TADF}} \ [\%]^d$	$ au_{\mathrm{p}}$ [ns] ^e	τ _d [μs]⁄	$k_{\rm F} [10^7 { m s}^{-1}]^g$	$k_{\rm IC} [10^7 { m s}^{-1}]^h$	$\frac{k_{\rm ISC}}{[10^7 \text{ s}^{-1}]^i}$	k_{TADF} $[10^5 \text{ s}^{-1}]^j$	$\frac{k_{\rm RISC}}{[10^5 \text{ s}^{-1}]^k}$	$m{\Phi}_{ ext{ISC}} \ [\%]^l$
PXZ-PQM	70	53.5	16.6	21.8	5.4	2.45	1.05	1.08	1.30	0.91	23.64
DPXZ-PQM	88	60.6	27.4	38.7	3.8	1.57	0.21	0.81	2.33	2.05	31.16
DPXZ-DPPM	61	38.1	22.9	25.6	3.5	1.49	0.95	1.47	1.73	1.05	37.52
a 5% emitters doped in DCzDPy film (100 nm) at 298 K. b The total fluorescence											
quantum yield. c The prompt fluorescent component of PLQY. d The delayed											
fluorescent component of PLQY. e The lifetimes of prompt fluorescent. f The											
lifetimes of TADF. g The rate constants of fluorescent. h The rate constants											
of internal conversion. i The rate constants of intersystem crossing. j The											
rate constants of TADF. k The rate constants of reverse intersystem crossing.											

 I The efficiency of ISC.

Fig. S9 ^{13}C NMR spectrum of Br-PQM in CDC1_3.

Fig. S11 $^{13}\mathrm{C}$ NMR spectrum of <code>PXZ-PQM</code> in CDCl_3.

Fig. S13 ¹³C NMR spectrum of DBr-PQM in CDCl₃.

Fig. S14 ¹H NMR spectrum of DPXZ-PQM in CDC1₃.

Fig. S16 ¹H NMR spectrum of DBr-DPPM in CDC1₃.

Fig. S15 ¹³C NMR spectrum of DPXZ-PQM in CDCl₃.

Fig. S17 ¹³C NMR spectrum of DBr-DPPM in CDCl₃.

Fig. S18 ¹H NMR spectrum of DPXZ-DPPM in CDCl₃.

Fig. S19 $^{13}\mathrm{C}$ NMR spectrum of DPXZ-DPPM in CDCl_3.

9. References

[S1] Runge E.; Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems. *Phys. Rev. Lett.*, 1984, **52**, 997.

[S2] Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang, G.; Wang Y. Highly Efficient Long-Wavelength Thermally Activated Delayed Fluorescence OLEDs Based on Dicyanopyrazino Phenanthrene Derivatives. *ACS Appl. Mater. Interfaces*, 2017, **9**, 9892–9901.

[S3] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.

R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. *Gaussian Inc 16*, revision A.03; Gaussian Inc.: Wallingford, CT, 2016.

[S4] Yang, T.; Liang, B.; Cheng, Z.; Li, C.; Lu, G.; Wang Y. Construction of Efficient Deep-Red/Near-Infrared Emitter Based on a Large π -Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of over 20%. *J. Phys. Chem. C*, 2019, **123**, 18585-18592.