Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Accurate estimation on photoelectric conversion efficiency of a series of anthracene-based organic dyes for dye-sensitized solar cells

Panpan Heng, Lemin Mao, Xugeng Guo^{*}, Li Wang^{*} and Jinglai Zhang^{*} Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China E-mail: xgguo@henu.edu.cn, chemwangl@henu.edu.cn, zhangjinglai@henu.edu.cn

Dye	СТ	LE
1	0.900	0.100
2	0.836	0.164
3	0.991	0.009
4	0.899	0.101

Table S1 Calculated charge transfer (CT) and local excitation (LE) characteristics for the HOMO \rightarrow LUMO transition of four molecules investigated in this work

Dye	State	$E_{\rm v}\left({\rm eV}\right)$	λ (nm)	f	Main configuration
1	S_1	2.52	493	0.937	$H \rightarrow L (82\%); H \rightarrow L+1 (11\%)$
2	S_1	2.89	429	0.319	$\mathrm{H} \rightarrow \mathrm{L} \ (6\%); \mathrm{H} \rightarrow \mathrm{L}{+1} \ (89\%)$
	S_2	3.50	355	1.167	$\text{H-2} \rightarrow \text{L+1} (47\%); \text{H-1} \rightarrow \text{L}(44\%)$
3	S_1	2.25	552	1.751	H-1 \rightarrow L (80%); H \rightarrow L (13%)
	S_4	3.26	380	0.405	H-3 \rightarrow L (45%); H-1 \rightarrow L+1 (26%)
4	S_1	2.02	613	1.199	$H \rightarrow L (80\%); H-1 \rightarrow L (11\%)$
	S ₃	2.98	417	0.595	$\text{H-2} \rightarrow \text{L} (60\%); \text{H-3} \rightarrow \text{L} (13\%)$

Table S2 Calculated vertical excitation energy (E_v) , absorption wavelength (λ) , oscillator strength (*f*), and major composition of MOs for all dyes at the TD-CAM-B3LYP/6-31G(d,p) level in tetrahydrofuran solvent

Fig. S1 The absorption spectra of dye **1** calculated by B3LYP, CAM-B3LYP, LC-BLYP, M06-2X, and PBE0 functionals and the 6-31G(d,p) basis set in tetrahydrofuran along with the experimental value.

Dye	$E_{dye+TiO_2}$ (eV)	$E_{\rm dye}({\rm eV})$	$E_{\mathrm{TiO}_2}(\mathrm{eV})$	$E_{\rm ads} ({\rm eV})^a$
1	-4443.30	-595.72	-3846.98	-0.60
2	-4565.61	-715.53	-3846.98	-3.10
3	-4649.14	-799.80	-3846.98	-2.36
4	-4689.27	-839.65	-3846.98	-2.64

Table S3 Calculated total energies of isolated dye (E_{dye}) , pure TiO₂ (E_{TiO_2}) , and dye@TiO₂ complex $(E_{dye+TiO_2})$, as well as the adsorption energy (E_{ads})

^{*a*} $E_{\text{ads}} = E_{\text{dye+TiO}_2} - (E_{\text{dye}} + E_{\text{TiO}_2}).$