Electronic Supplementary Information

Accurate estimation on photoelectric conversion efficiency of a series of anthracene-based organic dyes for dye-sensitized solar cells
Institute of Upconversion Nanoscale Materials, Henan Provincial Engineering
Research Center of Green Anticorrosion Technology for Magnesium Alloy, College of
Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
E-mail: xgguo@henu.edu.cn, chemwangl@henu.edu.cn,zhangjinglai@henu.edu.cn

Table S1 Calculated charge transfer (CT) and local excitation (LE) characteristics for the HOMO \rightarrow LUMO transition of four molecules investigated in this work

Dye	CT	LE
$\mathbf{1}$	0.900	0.100
$\mathbf{2}$	0.836	0.164
$\mathbf{3}$	0.991	0.009
$\mathbf{4}$	0.899	0.101

Table S2 Calculated vertical excitation energy $\left(E_{\mathrm{v}}\right)$, absorption wavelength (λ), oscillator strength (f), and major composition of MOs for all dyes at the TD-CAM-B3LYP/6-31G(d,p) level in tetrahydrofuran solvent

Dye	State	$E_{\mathrm{V}}(\mathrm{eV})$	$\lambda(\mathrm{nm})$	f	Main configuration
$\mathbf{1}$	S_{1}	2.52	493	0.937	$\mathrm{H} \rightarrow \mathrm{L}(82 \%) ; \mathrm{H} \rightarrow \mathrm{L}+1(11 \%)$
$\mathbf{2}$	S_{1}	2.89	429	0.319	$\mathrm{H} \rightarrow \mathrm{L}(6 \%) ; \mathrm{H} \rightarrow \mathrm{L}+1(89 \%)$
	S_{2}	3.50	355	1.167	$\mathrm{H}-2 \rightarrow \mathrm{~L}+1(47 \%) ; \mathrm{H}-1 \rightarrow \mathrm{~L}(44 \%)$
$\mathbf{3}$	S_{1}	2.25	552	1.751	$\mathrm{H}-1 \rightarrow \mathrm{~L}(80 \%) ; \mathrm{H} \rightarrow \mathrm{L}(13 \%)$
	S_{4}	3.26	380	0.405	$\mathrm{H}-3 \rightarrow \mathrm{~L}(45 \%) ; \mathrm{H}-1 \rightarrow \mathrm{~L}+1(26 \%)$
$\mathbf{4}$	S_{1}	2.02	613	1.199	$\mathrm{H} \rightarrow \mathrm{L}(80 \%) ; \mathrm{H}-1 \rightarrow \mathrm{~L}(11 \%)$
	S_{3}	2.98	417	0.595	$\mathrm{H}-2 \rightarrow \mathrm{~L}(60 \%) ; \mathrm{H}-3 \rightarrow \mathrm{~L}(13 \%)$

Fig. S1 The absorption spectra of dye $\mathbf{1}$ calculated by B3LYP, CAM-B3LYP, LCBLYP, M06-2X, and PBE0 functionals and the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set in tetrahydrofuran along with the experimental value.

Table S3 Calculated total energies of isolated dye $\left(E_{\text {dye }}\right)$, pure $\mathrm{TiO}_{2}\left(E_{\mathrm{TiO}_{2}}\right)$, and dye $@ \mathrm{TiO}_{2}$ complex ($E_{\text {dye }+\mathrm{TiO}_{2}}$), as well as the adsorption energy $\left(E_{\text {ads }}\right)$

Dye	$E_{\text {dye }+\mathrm{TiO}_{2}}(\mathrm{eV})$	$E_{\mathrm{dye}}(\mathrm{eV})$	$E_{\mathrm{TiO}_{2}}(\mathrm{eV})$	$E_{\text {ads }}(\mathrm{eV})^{a}$
$\mathbf{1}$	-4443.30	-595.72	-3846.98	-0.60
$\mathbf{2}$	-4565.61	-715.53	-3846.98	-3.10
$\mathbf{3}$	-4649.14	-799.80	-3846.98	-2.36
$\mathbf{4}$	-4689.27	-839.65	-3846.98	-2.64
${ }^{a} E_{\text {ads }}=E_{\text {dye }+\mathrm{TiO}_{2}}-\left(E_{\mathrm{dye}}+E_{\mathrm{TiO}_{2}}\right)$.				

