SUPPLEMENTARY INFORMATION

Understanding the limitations of NIR-to-visible photon upconversion in metallophthalocyaninesensitized rubrene systems

Edvinas Radiunas, ${ }^{1}$ Steponas Raišys, ${ }^{1}$ Saulius Juršěnas, ${ }^{1}$ Augustina Jozeliūnaitė, ${ }^{2}$ Tomas Javorskis, ${ }^{2}$ Ugné Šinkevičiūtè, ${ }^{2}$ Edvinas Orentas ${ }^{2}$, Karolis Kazlauskas ${ }^{\text {I* }}$
${ }^{1}$ Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
${ }^{2}$ Department of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

E-mail: Karolis.kazlauskas@ff.vu.lt

SYNTHESIS AND IDENTIFICATION

General methods

All reagents and starting materials were obtained from commercial sources and used as received. Reaction solvents 1,2-dichloroethane and triethylamine were distilled from CaH_{2}, and THF was distilled from sodium/ benzophenone. Brine refers to a saturated solution of sodium chloride All moisture-sensitive reactions were performed in oven-dried ($230{ }^{\circ} \mathrm{C}$) glassware under an atmosphere of dry argon. Thin-layer chromatography was performed on Merck silica gel plates with QF-254 indicator. Visualization was accomplished with UV (254 nm), potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$, ninhydrin, or vanillin. Column chromatography was performed using Merck silica 60 (40-63 $\mu \mathrm{m}$ particle size). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a NMR spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$, respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are referenced to residual solvent $\left(\mathrm{CDCl}_{3}, 7.26\right.$ and 77.16 ppm for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, respectively). When necessary, assignments were obtained by reference to COSY, HSQC, and HMBC correlations. Chemical shifts are reported in ppm, and multiplicities are indicated by br (broad), s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sxt (sextet), sept (septet), m (multiplet), and combinations thereof. Infrared spectra (IR) were recorded on a FTIR spectrometer equipped with a diamond ATR unit. Melting points were determined in open capillary tubes and are uncorrected. HRMS was recorded on Bruker Daltonics microTOF-II spectrometer equipped with ESI ion source in positive mode.

Abbreviations: DCE, 1,2-dichloroethane; DCM, dichloromethane; DMF, dimethylformamide; DMSO, dimethylsulfoxide; EtOAc, ethyl acetate; Hex, hexane; MeOH, methanol; MsCl, methanesulfonyl chloride; PE, petrol ether ($40-60^{\circ} \mathrm{C}$ fraction).

Phtalocyanines: PdPc and PtPc
 $135^{\circ} \mathrm{C}$; e) PtCl_{2}, benzonitrile, $191^{\circ} \mathrm{C}$.

3,6-dibutoxy-4,5-dichlorophthalonitrile (1)

A mixture of 2,3-dichloro-5,6-dicyanohydroquinone ($1.0 \mathrm{~g}, 4.37 \mathrm{mmol}, 1.0$ equiv), $n-\mathrm{BuBr}(1.4$ $\mathrm{mL}, 13.10 \mathrm{mmol}, 3.0$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.62 \mathrm{~g}, 26.22 \mathrm{mmol}, 6.0$ equiv) and $\mathrm{KI}(1.45 \mathrm{~g}, 8.74 \mathrm{mmol}$, 2.0 equiv) in DMF (20 mL) was heated at $80^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was cooled down to r.t., diluted with 1.0 M HCl solution and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude was purified by flash chromatography ($\mathrm{PE}: \mathrm{CHCl}_{3} 1: 1, R_{\mathrm{f}}=0.31$) to afford $899 \mathrm{mg}(60 \%)$ of $\mathbf{1}$ as a yellowish solid.

Spectral data were in accordance with a literature. [1]

3,6-dibutoxy-4,5-diphenoxyphthalonitrile (2)

A mixture of $1\left(0.72 \mathrm{~g}, 2.11 \mathrm{mmol}, 1.0\right.$ equiv), phenol ($0.99 \mathrm{~g}, 10.58 \mathrm{mmol}, 5.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(1.46 \mathrm{~g}, 10.58 \mathrm{mmol}, 5.0\right.$ equiv) in dry DMSO (20 mL) was heated at $90^{\circ} \mathrm{C}$ for 1.5 hours under argon. The reaction mixture was cooled down to r.t., diluted with 1.0 M HCl solution and extracted with DCM. The organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude was purified by flash chromatography (PE:DCM 1:2, $R_{\mathrm{f}}=$ $0.4)$ to afford $659 \mathrm{mg}(68 \%)$ of 2 as an yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.67$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), $4.12\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.64-1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39-1.28$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$), $0.84\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.45,152.94,146.57,129.70,123.64,115.56,112.86,106.48$, 75.78, 31.97, 18.87, 13.77.

Metal-free phthalocyanine (3)

A solution of 2 ($436 \mathrm{mg}, 0.96 \mathrm{mmol}, 1.0$ equiv) dissolved in dry n-butanol (15 ml) was refluxed at $135^{\circ} \mathrm{C}$ for 30 min under argon. Then, Li metal ($133 \mathrm{mg}, 19.14 \mathrm{mmol}, 20.0$ equiv) was added and reflux was continued for a further 3 hours. After cooling down the reaction mixture to r.t., excess of glacial AcOH was added and continued to stir at rt for 30 min . Then solvent was removed, crude dissolved in DCM and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude was purified by flash chromatography $\left(\mathrm{PE}: \mathrm{CHCl}_{3} 1: 1\right.$ to $1: 2, \mathrm{R}_{\mathrm{f}}=0.42$ (1:1)) to afford $247 \mathrm{mg}(57 \%)$ of $\mathbf{3}$ as a green solid; $\mathrm{mp} 305-308^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{dd}, J=8.3,7.6 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 16 \mathrm{H}$, $\mathrm{ArH}), 7.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}), 4.83\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.82-1.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.33-1.21\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.72\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=158.71,147.29,144.64,129.29,122.18,115.88,76.53,32.25$, 19.15, 14.08.

FT-IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3294(\mathrm{~N}-\mathrm{H}), 2957,2930,2870(\mathrm{C}-\mathrm{H}), 1720,1591(\mathrm{C}=\mathrm{N}), 1488,1453,1406$ (C-H), 1270 (=C-N), 1201 (C-O), 1163, 1079, 1070, 1020, 973, 932, 814, 746, $658 \mathrm{~cm}^{-1}$.

HRMS (ESI) calc. for $\mathrm{C}_{112} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{16}(\mathrm{M}+\mathrm{H})$: 1828.8458; Found: 1828.8459.

Palladium (II) phthalocyanine (PdPc)

A mixture of $\mathbf{3}$ ($20 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 0.066 \mathrm{mmol}, 6.0$ equiv) in dry n-butanol (2 mL) was refluxed at $135^{\circ} \mathrm{C}$ for 24 hours under argon. After cooling down to rt, the solvent was removed. The crude was purified by flash chromatography ($\mathrm{PE}: \mathrm{CHCl}_{3} 2: 1, R_{\mathrm{f}}=$ 0.48), then dissolved in minimum amount CHCl_{3}, precipitated with MeOH , filtered and washed with MeOH to afford $15 \mathrm{mg}(71 \%)$ of $\mathbf{4}$ as a green solid; $\mathrm{mp}>330^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH})$, $7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}), 4.87\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.84-1.72\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-$ $1.21\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.73\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.72,147.19,144.45,142.02,129.28,126.73,122.15,115.85$, 76.65, 32.22, 19.14, 14.09.

FT-IR (neat) $v_{\max } / \mathrm{cm}^{-1}$ 2956, 2931, $2870(\mathrm{C}-\mathrm{H}), 1722,1591(\mathrm{C}=\mathrm{N}), 1488,1451,1405(\mathrm{C}-\mathrm{H}), 1282$ (=C-N), 1201 (C-O), 1137, 1068, 965, 938, 746, $685 \mathrm{~cm}^{-1}$.

HRMS (ESI) calc. for $\mathrm{C}_{112} \mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{Pd}(\mathrm{M}+\mathrm{H})$: 1931.7335 ; Found: 1931.7309.

Platinum (II) phthalocyanine (PtPc)

A mixture of $\mathbf{3}$ ($20 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.0$ equiv) and PtCl_{2} ($3.5 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.2$ equiv) in dry benzonitrile (3 mL) was heated at reflux for 2 hours, and then the solvent was partially distilled off, precipitated with MeOH , filtered and washed with MeOH . The crude was purified by flash chromatography ($\mathrm{PE}: \mathrm{CHCl}_{3} 3: 1 R_{\mathrm{f}}=0.2$) to afford $12 \mathrm{mg}(53 \%)$ of $\mathbf{5}$ as a green solid; mp 274 $276{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{ArH})$, $7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArH}), 4.86\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.83-1.73\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33-$ $1.21\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.73\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.70,147.53,144.57,140.46,129.29,126.33,122.16,115.84$, 76.66, 32.20, 19.15, 14.09.

FT-IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1}$ 2956, 2922, $2870(\mathrm{C}-\mathrm{H}), 1721,1591$ (C=N), 1488, 1452, 1406 (C-H), 1283 (=C-N), 1202 (C-O), 1142, 1069, 970, 938, 747, $684 \mathrm{~cm}^{-1}$.

HRMS (ESI) calc. for $\mathrm{C}_{112} \mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{Pt}(\mathrm{M}+\mathrm{H})$: 2021.7944; Found: 2021.7990.
t-butyl-substituted rubrene: $\mathbf{\text { BRRub}}$

a) $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{CuI}, \mathrm{Ph}_{3} \mathrm{P}$, TEA, $90^{\circ} \mathrm{C}$; b) $\mathrm{DCM}, \mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{rt}$; c) n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to rt; d) MsCl , TEA, DCE rt to $130^{\circ} \mathrm{C}$.

((3,5-di-tert-butylphenyl)ethynyl)trimethylsilane (4)

A mixture of 1-bromo-3,5-di-tert-butylbenzene ($1.30 \mathrm{~g}, 4.83 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(279$ $\mathrm{mg}, 0.24 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{CuI}\left(46 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.05\right.$ equiv.) and $\mathrm{PPh}_{3}(76 \mathrm{mg}, 0.29 \mathrm{mmol}$, 0.06 equiv.) was dissolved in triethylamine (35 ml) under argon. TMS-acetylene was added and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 hr . After cooling to rt , the mixture was filtered through CELITE and evaporated to dryness. The crude was purified by flash chromatography (PE) to afford $1.34 \mathrm{~g}(97 \%)$ of $\mathbf{4}$ as a colorless solid.

Spectral data were in accordance with a literature.[2]

1,3-di-tert-butyl-5-ethynylbenzene (5)

To a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.97 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{MeOH} / \mathrm{DCM}(24 \mathrm{~mL} / 5.3 \mathrm{~mL}$) mixture compound 4 ($1.34 \mathrm{~g}, 4.67 \mathrm{mmol}, 1.0$ equiv.) was added under argon. The reaction mixture was stirred for 1 h at rt , then diluted with DCM and filtered. The organic phase was washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to afford 1.00 g (100\%) of 5.

Spectral data were in accordance with a literature.[2]

3-(3,5-di-tert-butylphenyl)-1,1-diphenylprop-2-yn-1-ol (6)

Compound 5 ($1.00 \mathrm{~g}, 4.67 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry THF (25 mL) under argon. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}(1.96 \mathrm{~mL}(2.5 \mathrm{M}), 4.90 \mathrm{mmol}, 1.05$ equiv.) was added dropwise. After 30 min , a solution of benzophenone ($0.85 \mathrm{~g}, 4.67 \mathrm{mmol}, 1.0$ equiv.) in dry THF $(4.0 \mathrm{~mL})$ was added and the reaction mixture was allowed to reach room temperature. After stiriing overnight, the mixture was diluted with 1.0 M HCl and extracted with ethylacetate. The combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography ($20: 1 \mathrm{PE} / \mathrm{EtOAc}, R_{\mathrm{f}}=0,37$) to afford $1.569 \mathrm{~g}(85 \%)$ of 6 as colorless solid; mp $99-100^{\circ} \mathrm{C}$. Compound $\mathbf{6}$ was immediately used for the next step.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7,74-7,68(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{t}, J=1,9 \mathrm{~Hz}, 1 \mathrm{H}), 7,40-7,33(\mathrm{~m}, 6 \mathrm{H})$, 7,32-7,28 (m, 2H), 2,89 (s, 1H), 1,33 (s, 18H);
${ }^{13}$ C BMR (101 MHz, CDCl_{3}) $\delta 150,72,144,99,128,13,127.93,127,50,125,95,125,84,122,98$, 121,21, 90,16, 88, 14, 74,73, 34,66, 31,16;

FT-IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3543,3070,2964,2869,2224,1589,1489,1449,1329,1163,1058,997$, 920, 880, 770, 699.

tBRub

Compound 6 ($250 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry DCE (5.0 mL) under argon. The mixture was cooled to $0^{\circ} \mathrm{C}$ and then, TEA ($0.22 \mathrm{~mL}, 1.58 \mathrm{mmol}, 2.5$ equiv.) was added followed by $\mathrm{MsCl}(0.059 \mathrm{~mL}, 0.76 \mathrm{mmol}, 1.2$ equiv.). After stirring at rt for 24 hr , the reaction mixture was heated at $130^{\circ} \mathrm{C}$ for 7 hr . The volatiles were removed in vacuo and the crude was purified by flash chromatography ($\mathrm{PE} \rightarrow 100: 1 \mathrm{PE} / \mathrm{DCM} \rightarrow 60: 1 \mathrm{PE} / \mathrm{DCM} \rightarrow 40: 1 \mathrm{PE} / \mathrm{DCM} \rightarrow$ 25:1 PE/DCM) and then crystallized from MeOH to afford $87 \mathrm{mg}(36 \%)$ of tBRub as orange crystals; $\mathrm{mp}>265^{\circ} \mathrm{C}$ (decomp.)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7,23-6,63(\mathrm{~m}, 24 \mathrm{H}), 1,28(\mathrm{~s}, 36 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.75,141.90,140.81,138.71,137.22,132.65,130.72,130.61$, 129.04, 127.07, 126.99, 126.95, 126.87, 126.20, 124.76, 124.70, 120.70, 34.86, 31.66.

FT-IR $\nu_{\max } / \mathrm{cm}^{-1} 3053,2963,2867,1592,1443,1392,1248,872,691$.
MS (MALDI-TOF) calc. for $\mathrm{C}_{58} \mathrm{H}_{60}(\mathrm{M}+)$: 757.12; Found: 757.96.

COPIES OF NMR SPECTRA

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

-156.45
-152.94
-129.70
-123.64
$<$
115.56
115.56 112.86 106.48

$\stackrel{\infty}{\stackrel{\infty}{i}}$

2

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig．S5．${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P d P c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ．

N	の ¢ \％	ペへに
∞	べ̇	ลัง ฺ
－	く「フ	

Fig．S6．${ }^{13} \mathrm{C}$ NMR spectrum of $\operatorname{PdPc}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ．

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\operatorname{PtPc}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P t P c}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{t B R u b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S12. ${ }^{13} \mathrm{C}$ NMR spectrum of tBRub ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$). The partial assignment of ${ }^{13} \mathrm{C}$ resonances are made by using HSQC and HMBC spectra (see below).

Fig. S13. HSQC spectrum of $\mathbf{t B R u b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S14. COSY spectrum of $\mathbf{t B R u b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S15. HMBC spectrum of tBRub $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Data File C:\CHEM32\1\DATA\IB\SIG11713.D

Acq. Operator :
Acq. Instrument : Instrument 1 Location .
Injection Date : 2020-01-16 12:52:11
Inj Volume : Manually
Acq. Method : C: \CHEM32 $\backslash 1 \backslash$ METHODS $\backslash C O L U M N _I B 3 _T E S T . M$
Last changed : 2020-01-16 12:18:54
(modified after loading)
Analysis Method : C: \CHEM32\1\METHODS $\backslash C O L U M N _I B 3 _T E S T . M$
Last changed : 2020-01-16 13:05:03
(modified after loading)
Additional Info : Peak(s) manually integrated
DAD1E, Sig $=300,4 \operatorname{Ref}=360,100$ (IBISIG11713.D)

Additional Info : Peak(s) manually integrated
DAD1E, Sig=300,4 Ref=360,100 (IBISIG11713.D)
mAU
(1400

 1400
 (1200-1
 \(\left.\begin{array}{rl}===1\end{array}\right)\)

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	:	1.0000	

 Signal 1: DAD1 E, Sig=300,4 Ref=360,100
 | Peak \# | $\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$ | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$ | Height [mAU] | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.853 BB | 0.0623 | 020.2500 | 517.6002 | 0.00 |

 Totals: \(\quad 6020.250001517 .60022\)

*** End of Report ***

Fig. S16. Chromatogram of tBRub (column Chiralpak-IB3, eluent-hexane).

Fig. S17. MALDI-TOF spectrum of tBRub.

PHOTOPHYSICAL PROPERTIES

Fig. S18. Absorption and fluorescence spectra of the emitters Rub (solid line) and tBRub (dashed line) in toluene $\left(\mathrm{c}=1.0 \times 10^{-5} \mathrm{M}\right)$.

Fig. S19. Normalized UC and FL emission spectra of Rub:PdPc solution in toluene at different PdPc concentrations (indicated) and fixed Rub (18 mM) concentration under CW excitation at 730 nm . Area under the curves is proportional to the number of photons registered.

The data in Fig. S19 shows that UC emission intensity remains the same and high in respect to that of FLPdPc in the low PdPc concentration range $15-50 \mu \mathrm{M}$. However, at higher concentrations the ratio of UC and FLpdPc intensities drops down indicating enhanced energy back-transfer to sensitizer.

Fig. S20. Excitation dependence of the product $\left[f \cdot \Phi_{T T A}\right]$ of $\mathbf{R u b}(18 \mathrm{mM}): \mathbf{P d P c}(15 \mu \mathrm{M})$ system at different excitation-detection geometries (indicated).

Corrections of $\boldsymbol{I}_{\boldsymbol{U C}}$ for the different penetration depth of excitation

Almost 4-fold different molar extinction coefficients of PdPc and PtPc sensitizers at the UC excitation wavelength of 730 nm caused different excitation penetration depth (d) in the UC solutions

$$
\begin{gathered}
d_{P d P c}=\frac{\log (e)}{\varepsilon \times c}=\frac{\log (e)}{1.9 \cdot 10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \times 15 \cdot 10^{-6} \mathrm{M}}=0.15 \mathrm{~cm} \\
d_{P t P c}=\frac{\log (e)}{5 \cdot 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \times 15 \cdot 10^{-6} \mathrm{M}}=0.58 \mathrm{~cm}
\end{gathered}
$$

To correct for the different emission collection efficiency of the detector because of the different d, PtPc concentration was increased ca. 4 times from $15 \mu \mathrm{M}$ to $56 \mu \mathrm{M}$ so that $d_{\boldsymbol{P d P c}}=d_{\boldsymbol{P t P C}}$. The correction factor (≈ 4) deduced from UC emission intensity measurements at these two concentrations at $I_{\text {exc }}=100 \mathrm{~W} / \mathrm{cm}^{2}$ was used then to correct $I_{U C}$ data of Rub:PtPc system (see Fig. 6b, main article) to compensate for the reduced collection efficiency.

To find out whether any corrections due to the different d are required to compare $I_{U C}$ and $I_{F L}$, the following estimations were made. Excitation penetration depth at the FL excitation wavelength of 485 nm (direct excitation of Rub emitter) in all the studied rubrene-based UC systems is much smaller in respect to the d in the case of sensitizer excitation at 730 nm

$$
d_{R u b}=\frac{\log (e)}{3.3 \cdot 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \times 18 \cdot 10^{-3} \mathrm{M}}=0.007 \mathrm{~cm}
$$

Taking into account that $I_{U C} \propto\left[T_{1}^{R u b}\right]^{2}$ and $T_{1}^{R u b}$ decay follows that of the PdPc sensitizer with $d_{\boldsymbol{P d P c}}=0.15 \mathrm{~cm}$ in Rub:PdPc system at $730 \mathrm{~nm}, I_{U C}$ signal will emerge from twice as shorter penetration depth as compared to $d_{P d P c}, d_{U C}=d_{P d P c} / 2 \approx 0.07 \mathrm{~cm}$.

Our thorough measurements clearly demonstrate that in the currently utilized excitation-detection configuration emission collection efficiency of the detector does not change for the $d<0.08 \mathrm{~cm}$, thus enabling to compare $I_{U C}$ and $I_{F L}$ directly without using any corrections.

REFERENCES

S1. E. A. Safonova, A. G. Martynov, S. E. Nefedov, G. A. Kirakos, Y. G. Gorbunova, A. Y. Tsivadze, Inorg. Chem., 2016, 55, 2450-2459.
S2. Y. Ushitani, Y. Teki, T. Takui, K. Itoh, Macromolecules, 1993, 26, 6673-6675.

