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Brief Description of Original Vendik Model
Model derivation

The vendik model was initially developed based on the con-
ventional Landau theory, which gives Helmholtz free en-
ergy F with respect to the vector macroscopic polarization
P (order parameter in Landau theory):

F = F0 +aP2 +
b
2

P4 (A.1)

According to the Landau theory, the coefficient a is as-
sumed to be a linear function of temperature and equals to
zero at the Curie-Weiss temperature Tc, i.e. a = aT (T −Tc)

and b are constants as well.
As verified in Ref.7 in terms of ferroelectric polarization,

a cubic equation corresponding to parameter y was found
as:

y3 +3η(T )y−2ξ (E) = 0 (A.2)

Where in equation A.2, y is normalized polarization in-
duced by DC bias and can also be represented by y =
QDC
DN S
√

3ε00. η and ξ are two variables corresponding to tem-
perature and electric fields, which can expanded as:

ξ (E) =

√(
E

EN

)2

+ξ 2
s (A.3)
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θF

4Tc

)2

+

(
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Tc

)2

−1 (A.4)

In equations A.3 and A.4, the following model parame-
ters are used. Tc is the curie temperature of the materials;
θF is the effective Debye temperature; ξs is the statistical
dispersion of the biasing field; EN is the normalizing field.
And the parameter can be written as EN = 2DN/ε0(3ε00)

3/2,
where DN is constant in original cubic equation,7 andε00 is
analog of Curie-Weiss constant C and can be represented as
ε00 =C/Tc. If we pay attention to the mathematical analy-
sis of the cubic equation A.2, the solution to the equation
depends on the value of the coefficients ηand ξ . If the
following inequality is fulfilled:

ξ (E)2 +η(T )3 > 0 (A.5)

Equation A.2 has one real root. From the physical point

of view, the single root to equation (2) indicate the absence
of the spontaneous polarization and the presence of the
polarization induced by the biasing field. In other words,
when the inequality in A.5 satifies, it indicate the ferro-
electrics stay at the paraelectric state.

On the other hand, under the condition:

ξ (E)2 +η(T )3 < 0 (A.6)

Equation A.2 will have three real roots. One of the roots
is connected with an unstable state and therefore has no
physical sense. For ξ = 0, we can have y1,2 =±

√
−3η , and

y3 = 0.
It can be found that the other two roots y1,2 correspond

to the spontaneous polarization. Existence of the sponta-
neous polarization indicates the ferroelectric state of the
sample.

Furthermore, in order to calculate the complex permit-
tivity of ferroelectrics, another model is discussed in8 by
considering the factors from energy dissipation. There are
four mechanisms of energy dissipation Γ1,2,3,4 elaborated
in8:

1. Multiphonon scattering of the soft ferroelectric mode:

Γ1 =−i
π

2
ω00

ωm

(
T
Tc

)2

G0.5
ω (A.7)

2. Quasi-debye mechanism of the energy dissipation:

Γ2 =
A2

1+ iω/ω2

(
y2

1+E/EN

)
(A.8)

3. Transformation of microwave electric field oscilla-
tions into acoustic oscillations due to the field generated
by charged defects:

Γ3 =
A3

1+ iω/ω3
ξ

2
s (A.9)

4. Low frequency relaxation:

Γ4 = A4/(1− iω/ω4) (A.10)

where A2,3,4 and ω2,3,4 are model constants and resonant
angular frequency values of which were found by empirical
relations and literature data8 respectively responsible for
loss mechanism 2, 3 and 4. Angular frequency is ω = 2π f
and f is operating frequency of biasing field E. In addition,
Tc is Curie temperature of pure ferroelectrics, y is normal-
ized polarization induced by DC bias EN is the normalizing
field and ξs is the statistical dispersion of the biasing field.
The parameter ξs (also known as defect factor) reflects the
‘quality’ of the material and corresponds to defects (includ-
ing oxygen vacancies and inhomogeneity) in ferroelectrics,
which will be well explained in the next section.
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Analysis on parameter ξs in the model

As analyzed, for the model we used in the present pa-
per, three external factors (temperature, electric field, fre-
quency) will impact the dielectric response of ferroelec-
tric material. In terms of material itself, the proportion
of barium in BST and defects in the ferroelectrics, which
was found related to ξs

27, can both affect the dielectric re-
sponse as well. Especially for fixed proportion, it is quite
worthy to investigate the dielectric response under differ-
ent scales of ξs.

The defects in the ferroelectric materials will induce local
fields and lead to a statistical dispersion under the external
DC bias field27. In oxides, the oxygen vacancies are the
most common positively charge defects, which induce lo-
cal mechanical strain and electric field around them. Not
only charged, but also neutral defects may also cause lo-
cal polar phases and associated local fields in single crystal
paraelectrics. The parameter ξs takes these effects into ac-
count via statistical averaging of the applied DC and local
electric fields27,28.

In original model, the measure of defects in ferroelectrics
ξs was emphasized as a measure of mechanical and electri-
cal strains responsible for diffuseness of the phase transi-
tion. It is found that ξs is tightly correlated with the cal-
culation of ferroelectric phase transition temperature (T ′c )
and also temperature of the maximum dielectric permit-
tivity (Tm). In the model, the ’defect parameter’ ξs figures
out the important correlations among curie temperature of
pure ferroelectric (Tc), T ′c and Tm, which can be simply in-
terpreted as27:

T ′c (ξs)< Tc < Tm(ξs) (A.11)

This agrees to the work in51, which indicate the curie tem-
perature of ferroelectrics can be affected by impurities and
defects in material.

Model constants

For the original Vendik model, the relevant val-
ues/formulas of each model constants can be found in the
Table A.1.

Simulation results using improved theoreti-
cal model

In the current section, we will briefly present the simula-
tion results by employing the modified model for both pure
BST and BST-MgO composites. More specifically, in section
B.2, we will elaborate the how we consider the impact from
MgO doping onto modelling works.

Pure BST

In the present work, it could be found that the dielectric
constant and loss tangent can be related to external ap-

plied factors: electric fields (E), temperature (T) and fre-
quency (f). In the following section, we will show some
simulation results for the permittivity of BST materials ver-
sus corresponding with these three parameters. In the fol-
lowing section, we will employ Vendik’s model on pure
BST 64 (proportion of barium=0.6) and also MgO-doped
BST64 as example materials to investigate the relationship
between dielectric constant (or dielectric loss) and three
different factors (electric fields, temperature and frequency
). Furthermore, defect parameter ξs, i.e. statistical disper-
sion of the biasing field will be considered as well in the
simulation.

For pure BST material, Fig. B.1 an B.2 give a how dielec-
tric constants and loss tangent of different BST64 materials
change with temperature at three different frequencies. In
Fig. B.1, at three frequencies, when the temperature rises,
it can be easily found that the permittivity value initially
goes up to a maximum value at Tm and falls thereafter. With
higher values of ξs, we can find lower value of permittivity
and lower Tmas well. It should be noted that due to the
presence of built-in electric field and mechanical strains,
represented by a statistical dispersion of the biasing field ξs

, Tm can be displaced to higher value with respect to Curie
temperature Tc (theoretical value). However, with higher
value of ξs, we will have lower value in phase transition
temperature, as discussed in section A.2. This explains at
100kHz, the peak of the dielectric constant vs. temperature
moves to the left in the Fig. B.1.

In Fig. B.2, it shows how dielectric loss tangent changes
with temperature under different frequencies and statisti-
cal dispersions of the biasing fields. It can be found that
at the lower frequency ranges (100kHz and 100MHz), the
loss tangent decreases with higher ξs. However, when the
frequency goes up to 10 GHz, the trend goes the other way
around, higher level of defects will lead to more dielectric
loss in the material.

As shown in Figures B.3 and B.4, which both permittiv-
ity and loss tangent are plotted against the frequency at
different temperatures (250K 290K and 320K). For both
sets of simulations (dielectric constants and loss tangent),
the external bias field was set to be E=0. In Fig. B.3, at
all selected temperatures , it can be easily found that the
permittivity keep decreasing with the frequency. Generally,
the dielectric constant drops with the increase of ξs.

Furthermore, if we carefully observe the trend of loss
tangent versus frequency at different values of ξs, it be-
comes tricky. Taking example of simulation data at 320K
(easier to be follow in Fig. B.4), it can be found that when
the frequency is below certain value around 100 MHz, with
lower ξs, we have higher dielectric losses. However, if the
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Parameter Value Parameter Value
A2(x) 0.8(1+20x)−1 f2 (Hz) 30 GHz
A3 0.05 f3 (Hz) 10 GHz
A4 0.005 f4 (Hz) 10 MHz
θF (K) 175 EN(x) (kV/cm) 19+340x−50x2−65x3

ω00(x) (s−1) 0.67(1+6x)×1013 Tc(x) (K) 42+439x−96x2

ωM (s−1) 2.6×1013 C(x) (K) (0.78+0.76x2)×105

Table A.1 Model constants in original Vendik model

Fig. B.1 Dielectric constant vs Temperature of various pure BST64, at
different levels of defects and frequencies at external biasing field E=0.

Fig. B.2 Dielectric Loss vs Temperature of various pure BST64, at dif-
ferent levels of defects and frequencies at external biasing field E=0.

frequency goes over than certain value around 200MHz,
with a higher the dielectric loss will also increase. This
can be explained by the fact that defects can play a more
important and contributing role in dielectric loss at higher
frequencies.

In Figures B.5 and B.6, by employing the improved the-
oretical modelling, we reveal how loss tangent and tun-
ability change with different types of the BST material, i.e.

different proportion of barium (x) and different values of
ξs. During the simulation, the frequency was set to be 100
kHz and temperature is set be 290 K (room temperature).

From Fig. B.5 and B.6, we can observe that, if the pro-
portion of barium is fixed, the overall tunability nr and loss
tangent both decrease with higher level of defects in the

Fig. B.3 Dielectric Constant vs Frequency of various pure BST64, at
different levels of defects and temperatures at external biasing field E=0.

Fig. B.4 Dielectric Loss vs Frequency of various pure BST64, at different
levels of defects and temperatures at external biasing field E=0.
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material. And if ξs remains the same, it can be summarized
that when proportion barium (x) increases from 0.2 to 0.6,
the tunability gets enhanced whereas the loss tangent be-
comes larger as well. Moreover, when the barium ratio
continues to increase till 0.8, both tunability and loss tan-
gent drop dramatically. This trend can be concluded with a
higher overall tunability, there will always be a higher loss
associated in the material.

MgO-Doped BST

In this part, we will initially discuss the new mechanisms in
details brought by MgO doping on BST material and elab-
orate the modified equations considering that accordingly.
And the simulated dielectric properties of BST-MgO com-
posites using the improved model will be presented at the

Fig. B.5 Tunability versus Electric Fields for different pure BST (x varying
from 0.2 to 0.8, ξs varying from 0.2 to 0.8).

Fig. B.6 Loss tangent versus Electric Fields for different pure BST (x
varying from 0.2 to 0.8, ξs varying from 0.2 to 0.8).

end.
After MgO doping, Ti4+ ions can be replaced by Mg2+, a

negatively charged defect Mg
′′
Ti will accompany the corre-

sponding number of positively charged oxygen vacancies,
which satisfy the site balance and charge neutrality condi-
tions as follows32,52,53:

BaO+MgO→ BaBa +Mg
′′
Ti +2OO +V ••O (B.1)

With the generation of V ••O in the material, oxygen
vacancy concentration can effectively increase. Oxygen
vacancies are formed to compensate the defect centres
(Mg′′Ti ) in MgO-doped BST. More mobile vacancies would
be attracted to the vicinity of the oppositely charged impu-
rity center. The formation of defect complexes from the
individual defects can be written as follows32,52,53:

Mg
′′
Ti +V ••O ↔ (Mg

′′
Ti−V ••O ) (B.2)

As is described elsewhere, dipoles may produce local
electric fields and reduce the irreversible domain wall mo-
tion. Furthermore, the electric dipoles could be ordered
under external electric field. It will, in turn, form a lower
net internal field and reduce the polarization of polar clus-
ters and then decrease the permittivity and dielectric loss.
So, these defect dipoles Mg′′Ti−V ••O are thought of as defects
pinning domain wall motion.

For multi-phase ceramics, at low frequency, the interfaces
between BST and MgO will further create more charged
defects in the material. As a consequence, the value of
ξs related to the defects in the material needs to be ele-
vated. Therefore , another term ξMg, which is positively
correlated with MgO doping content is added to the previ-
ous parameter ξs, where the new defect parameter ξ ′s could
be presented as:

ξ
′
s = ξs +ξMg (B.3)

Moreover, dielectric loss will also be affected by MgO
doping. Both the losses Γ1 and Γ2 originate from the in-
teraction between a.c. field with the phonons of the mate-
rial8, i.e. lattice oscillations and soft mode phonons con-
tribute to the total loss, and they exhibit very high impor-
tance at microwave-frequencies. MgO doping causes a con-
siderable distortion of the average lattice parameter, i.e.
expansion of Ti-Ti lattice distance and stiffening of soft-
mode in BST material. Therefore, we can postulate that Γ1

and Γ2 will both reduce after MgO doping by a factor of
KMg. Moreover, we let this KMg dependent on the degree
of doping. With no doping (ξMg = 0), KMg should be equal
to 1. Here, we assume the form of KMg conforms to an
exponential function, as indicated in equation B.4.

14 | 1–17Journal Name, [year], [vol.],



Fig. B.7 Curve fitting with BST64 experimental permittivity data to find
the constants ka,kb,kc,kd .

KMg = exp(−cξMg) (B.4)

The value of c is positive and determines the dependence
of KMg on doping content factor ξMg. For the sake of con-
venience, we assume c = 1 for the present model.

Therefore, both shrunk losses (Γ′1 and Γ′2) by the factor
of KMg can be expressed in following two equations:

Γ
′
1 =−iKMg

π

2
ω00

ωm

(
T
Tc

)2

G0.5
ω (B.5)

Γ
′
2 =

KMgA2

1+ iω/ω2

(
y2

1+E/EN

)
(B.6)

And for Γ3 considering the contribution of charged defects
in the material, with more oxygen vacancies emerging, we
replace the parameter ξs by referring to equation B.3.

Γ
′
3 =

A3

1+ iω/ω3
(ξs +ξMg)

2 (B.7)

In regard to Γ4, which the is universal low-frequency
loss32, there is a clear clue showing that the overall loss
is reduced, but the resonant frequencies are elevated due
to the increment of impurities in the dipolar complexes in-
troduced by MgO doping. Γ4 is supposed to be decreasing
with the rise of MgO content, but resonant angular fre-
quency ω4 needs to be elevated, i.e. ω ′4 = ω4/KMg, and
therefore the modified equation of Γ4 could be expressed
as:

Γ
′
4 = KMgA4/(1− iω/ω

′
4) (B.8)

In order to address the frequency dependence of permit-
tivity, a new factor K(f) is introduced as:

K( f ) = ka tanh[kb ln( f )+ kc]+ kd (B.9)

Hence, the dielectric constant of ferroelectric can be writ-
ten as:

ε(E,T, f ) =
ε00

[G(E,T )K f ( f )]−1 +∑
4
q=1 Γq(E,T, f )

(B.10)

In equation B.9, ka,kb,kc,kd are constants remained to be
found for the modified model. This can be done through
curve fitting process between our measurement data on
BST64 and the updated equation for ε(E,T, f ), as shown
in Fig. B.7. And model constants ka,kb,kc,kd were found as
-0.442, 0.490, -3.2 and 0.453 respectively.

By considering the MgO doping on the original Vendik
modelling, we further utilize it to run a couple of simula-
tions on dielectric response at different temperature, fre-
quency and biasing electric field. Here, we took BST64 as
an example and set the range of ξMg from 0 to 0.6. For sake
of convenience, ξs is set to be constant at 0.5.

Therefore, from Fig. B.8 to B.10, we can observe that:
(1) At all frequencies, dielectric constant and tunability

will decrease with the increase of MgO doping content.
(2) For loss tangent at 10MHz, the reducing effect on loss

tangent caused by MgO doping is most obvious at 100kHz
and 100MHz. But at high frequencies at 10 GHz, the loss
tangent can be slightly enhanced by MgO doping when E >

5 kV/cm.

Fig. B.8 Dielectric Constant versus Electric Field at different frequencies
and MgO doping content
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Fig. B.9 Tunability versus Electric Field at different frequencies and MgO
doping content

Fig. B.10 Loss Tangent versus Electric Field at different frequencies and
MgO doping content

Experimental Section
BST64 powders were prepared by solid state synthe-
sis. Stoichiometric amounts of Barium carbonate (Aldrich,
99.999%), strontium carbonate (Aldrich, 99.9%) and tita-
nium dioxide (Aldrich, 99.8%) were weighted and mixed
within a nylon ball mill jar with ethanol and zirconium ox-
ide balls. The ball milling process was carried out in the
ball mill machine at 360 rpm for 4 hours followed by dry-
ing. The powder was sieved through 250 mm sieve and
calcinated at 1100◦C for 4 hours. Following this, the pow-
der was subjected to a repeated ball milling process, dried
and sieved. For conventional sintering process, the result-
ing powder was mixed with a PVA binder and uniaxially
pressed into 15 mm to 40 mm diameter pellets with ap-

proximate 200MPa. The pellets were sintered at temper-
atures ranging from 1200 to 1500 ◦C for 3 hours with 3
◦C/m ramping rate and slow cooling.

It is also important to discuss the discrepancy between
the simulation and the experimental data below the Curie
point as can be observed in Fig. 9 of the manuscript. Ex-
perimentally, at lower temperature, the ferroelectric ma-
terial will experience several phase transitions below the
order-disorder transition temperature. For an example,
BST70/30 ferroelectric materials exhibit three dielectric
peaks at around 176 K, 225 K, 298 K corresponding to
rhombohedral-orthorhombic-tetragonal-cubic phase tran-
sitions respectively under the Curie point of the material.
However, Vendik model provides a relationship between
the dielectric constant, temperature, frequency and bias-
ing field based on the calculation of polarization by solving
cubic equations. This model only defines the boundary be-
tween order-disorder transition (ferroelectric to paraelec-
tric at Curie temperature) and assumes the other phase
transitions occurring under the Curie point are smooth. To
sum up, the discrepancy of the fitting at lower tempera-
ture till around the Curie point is due to the simplified cal-
culation of Landau-Ginzburg equations used to derive the
Vendik model.

Deep learning model
Deep learning architecture selection

Based on the experiments conducted in Neural Network De-
sign book by Hagan et al.,41 several discussions have been
made to come up with an upper bound for the number
of neurons in hidden layer(s) that prevents the network
from overfitting the data. This upper bound depends on
the amount of training data available and the number of
input and output neurons. As a rule of thumb, the maxi-
mum number of hidden neurons (Nh) is defined by;

Nh = Ns/(α ∗ (Ni +No)) (D.1)

where,
Ni = number of input neurons
No = number of output neurons
Ns = number of samples in training set
α = an arbitrary scaling factor (usually 2-10)
Considering the fact that we have 35000 data points in the
initial training stage, the number of hidden neurons should
approximately be less than 1250 (α=2). It is also under-
stood that having more hidden layers enable learning as
much information as possible from the training data as long
as the network does not overfit. Therefore, we developed a
NN with four hidden layers. Each branch was given three
layers to have the capability to learn the different charac-
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Table D.1 Tunability and loss tangent validation MSE comparison

Network architecture Tunability val-
idation MSE

Loss tangent
validation
MSE

Separate networks 5x10−6 8x10−5

Proposed architecture 2.8x10−6 1.18x10−5

teristics of tunability and loss tangent separately. There is
no specific rule for number of hidden layers or number of
neurons in each layer; this is usually done by intuition or
trial-and-error. We experimented with hidden layers up to
6 with different neurons in each layer and observed the ini-
tial variation of the training and validation losses. Having
1-2 hidden layers trained the network very fast, however,
had a relatively high settled validation loss. Higher num-
ber of hidden layers resulted in slow training. The pro-
posed network architecture yielded the lowest validation
loss. However, it should be noted that selecting slightly
different number of neurons in each layer instead of the
proposed numbers would not make a considerable change
to the final training/validation losses as long as they fall
well below the upper limit (i.e. some [30, 70, 150, 80]
neurons instead of [50, 100, 100, 50] neurons).

Cross-validation and training performance

Another important point to note is that we used one sin-
gle neural network that branches off to predict tunability
and loss tangent separately instead of have two separate
networks for tunability and loss tangent. by inspecting the
simulated and experimental data, we found that the mate-
rials that have higher tunability tend to have a higher loss
tangent as well. Therefore, we observed a rough propor-
tional relation between the two quantities, which is gener-
ally true, but not always. We realized that a neural network
could learn this relationship and it would help to make bet-
ter predictions. In order to learn this information, tunabil-
ity and loss tangent should be integrated in the same neural
network and should have at least one common layer. Thus,
we developed a single NN with one common hidden layer
and then branches off. Once the errors of tunability and
loss tangent are backpropagated till this common layer, it
adjusts its weights to reduce the total training loss (tunabil-
ity + loss tangent) instead of individual losses. Hence, we
believe that this layer could learn the stated proportion-
ality. The validation loss of the proposed architecture is
lower than that of two separate networks, which confirms
that the relationship between the two quantities is indeed
helpful when learning. Table D.1 summarizes the settled
validation losses.

Unlike in classical machine learning algorithms, it is
practically difficult to perform K-fold cross validation with

K=5 or 10 as there is usually no terminating condition to
stop the training (i.e. validation loss should be constantly
monitored and likewise the best model should be selected).
However, K-fold cross validation with K=2 is certainly pos-
sible.

We performed K-fold cross validation with K=2 by hav-
ing 3 separate databases for training, validation and test-
ing. After training with the small experimental database
in the second phase, the model with the lowest validation
loss was selected (early stopping method was employed to
avoid overfitting) and tested on the test set. Fig. 7 in the
manuscript shows the prediction results for the test set. It
can be observed that the predictions are quite accurate (as
quantified and compared using equations 8 and 9 respec-
tively) for the test set and the model has avoided overfit-
ting.

Fig. D.1 Variation of training and validation losses during training

Deep learning parameters

Table D.2 One-hot vectors of discrete frequencies

Frequency One-hot Encoding
1kHz 10000000
10kHz 01000000

100kHz 00100000
1MHz 00010000

10MHz 00001000
100MHz 00000100

1GHz 00000010
10GHz 00000001

Table D.2 shows the one-hot vectors derived for discrete
frequencies present in the simulated database. One-hot en-
coding significantly improves the machine learning model
performance rather than using bare categorical values.
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