Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

New family of quaternary thiosilicates SrA₂SiS₄ (A = Li, Na, Cu) as promising infrared nonlinear optical crystals

Ya Yang, Kui Wu*, Xiaowen Wu, Bingbing Zhang*, Lihua Gao

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province,

College of Chemistry and Environmental Science, Hebei University, China.

To whom correspondence should be addressed : E-mail: wukui@hbu.edu.cn (Kui Wu)

CONTENTS

- 1. Synthesis of Title Compounds
- 2. Structural Refinement and Crystal Data
- 3. Property Characterization
- 4. Tables and Figures
- 5. References

1. Synthesis of Title Compounds

All the binary sulfides as initial reagents including SrS, Ag₂S, Cu₂S, Li₂S and SiS₂, with high purity (\geq 99.9%) were purchased from the Beijing Hawk Science & Technology Co., Ltd without further purification. The whole preparation process is completed in an Ar-filled glovebox because of their instability in the air. In order to prepare the targeted products, we have chosen many of different ratio of raw materials and the high yield was appeared with the ratio of SrS : A₂S : SiS₂ at 1:3:1. Their spontaneous crystallization were completed in the vacuum-sealed silica tubes. Firstly, the tube was heated to 600 °C in 30 h and kept at this temperature for about 100 h, then quickly down to room temperature. The above products were ground and then loaded into the vacuum-sealed silica tubes. They were further sintered again at 1000 °C for 10 days and slowly down to room temperature with 5°C/h. Finally, many high quality colorless crystals with millimetre-level were found in the tubes after washed with N, N–dimethylformamide (DMF) solvent and they are stable in the air within several weeks.

2. Structural Refinement and Crystal Data

Selected high-quality crystals were used for data collections on a Bruker SMART APEX II 4K CCD diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å) at 296 K. The crystal structures were solved by direct method and refined using the SHELXTL program package.^[1] Multi-scan method was used for absorption correction.^[2] Rational anisotropic thermal parameters for all atoms were obtained by the anisotropic refinement and extinction correction. PLATON was also used to check the final structures and no other symmetries were found.^[3] Detail refinement parameters and data were shown in Table S1.

3. Property Characterization

3.1 Powder X-ray Diffraction

Powder X-ray diffraction (XRD) patterns of title compounds were collected on a Bruker D2 X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at room temperature. The 2θ range was 10-70° with a step size of 0.02° and a fixed counting time of 1s/step.

3.2 UV-Vis-Near-IR (NIR) Diffuse-Reflectance Spectra

Diffuse-reflectance spectra were measured by a Shimadzu SolidSpec-3700DUV spectrophotometer in the wavelength range of 200–2600 nm at room temperature.

3.3 Second-harmonic Generation Measurement

Through the Kurtz and Perry method,^[4] powder SHG responses of title compounds were investigated by a Q-switch 2.09 μ m laser with different particle sizes, including 38–55, 55–88, 88–105, 105–150, 150–200, and 200–250 μ m. The AgGaS₂ crystal was ground and sieved into the same size range as the reference.

3.4 LDT Measurement

The LDTs of title compounds were evaluated on powder sample $(150-200 \ \mu m)$ with a pulsed YAG laser. Similar size of AgGaS₂ is chosen as the reference. To adjust different laser beams, an optical concave lens is added into the laser path. The damage spot is measured by the scale of optical microscope.

3.5 Computational Description

In order to further investigate the relationship of structure–property, the electronic structures of title compounds were studied by density functional theory (DFT) based on ab initio calculations.^[5] The exchange-correlation potential was calculated using Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) with the scheme.^[6] The following orbital electrons were treated as valence electrons, Li: 2s¹, Na: 2p⁶ 3s¹, Cu: 4p⁶ 4d¹⁰ 5s¹, Sr: 4s² 4p⁶ 5s², Si: 3s² 3p², S: 3s² 3p⁴. To achieve energy convergence, a plane-wave basis set energy cutoff was 720 eV within normal-conserving pseudo-potential (NCP)^[7]. As important parameters for NLO crystals, SHG coefficients were also calculated with suitable scissors operators.^[8]

4. Tables and Figures

Table S1. Crystal data and structure refinement for title compounds.

Table S2. Atomic coordinates, isotropic displacement parameters, bond

 valence sums (BVS) and global instability index (GII) for title compounds.

Table S3 Structural comparison in I_2 -AE-M^{IV}-Q₄ (I = monovalent cations: Cu, Ag,

Na, Li; AE = Ba, Sr; $M^{IV} = Si$, Ge, Sn; Q = S, Se) system.

Table S4. Distortion degree $\Delta d = 2 - (c/a)$ in the Li-based CL sulfides.

Table S5. LDTs of title compounds and AgGaS₂ (as the reference)

Table S6. Comparison on optical parameters of known sulfides in the I_2 -AE-M^{IV}-S₄

system (I = Li, Na, Cu, Ag; AE = Ba, Sr; M^{IV} = Si, Ge, Sn).

Figure S1. SHG density of SrNa₂SiS₄ (a), SrLi₂SiS₄ (b) and SrCu₂SiS₄ (c).

Empirical formula	SrLi ₂ SiS ₄	SrNa ₂ SiS ₄	SrCu ₂ SiS ₄
formula weight	257.83	289.93	371.03
crystal system	Tetragonal	Trigonal	Trigonal
space group	$I\overline{4} 2m$	R3c	$P3_{1}2_{1}$
cell parameter <i>a</i> (Å)	6.469(3)	23.486(3)	6.0710(3)
cell parameter c (Å)	7.689(7)	6.8764(19)	15.139(2)
Z, $V(Å^3)$ (Volume)	2, 321.8(4)	18, 3284.7(13)	3, 483.22(8)
D _c (g/cm ³) (calculated density)	2.661	2.638	3.825
μ (mm ⁻¹) (absorption coefficient)	9.723	8.697	16.140
goodness-of-fit on F ²	0.711	1.084	0.833
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0132, 0.0283	0.0403, 0.1031	0.0224, 0.0364
R_1 , wR_2 (all data)	0.0143, 0.0288	0.0507, 0.1084	0.0265, 0.0372
absolute structure parameter	0.009(8)	0.023(8)	0.010(13)
largest diff. peak and hole $(e \cdot Å^{-3})$	0.278, -0.188	1.727, -0.667	0.545, -0.442

Table S1. Crystal data and structure refinement for title compounds.

^[a] $R_1 = F_o - F_c / F_o$ and $wR_2 = [w (F_o^2 - F_c^2)^2 / wF_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

		SrLi ₂ S	SiS ₄		
Atom	x	у	Z	U_{eq}	BVS
Sr1	10000	10000	10000	10(8)	1.923
Si1	10000	10000	5000	8(0)	4.121
Li1	10000	5000	7500	23(2)	0.986
S 1	8094(4)	8094(4)	6567(2)	10(8)	2.005
		GII (vu)			0.051
		SrNa ₂ S	SiS ₄		
Atom	x	у	Z	$U_{ m eq}$	BVS
Sr1	4710(8)	6575(5)	-579(0)	19(7)	1.916
Nal	6615(2)	7945(2)	-1038(7)	21(3)	1.185
Na2	6890(4)	7301(4)	4052(1)	68(2)	0.885
Si1	5230(3)	6665(2)	4385(5)	7(5)	3.937
S 1	5817(4)	6687(2)	-3204(4)	18(5)	1.968
S2	4391(5)	6736(0)	-4721(5)	19(1)	1.849
S 3	4835(4)	5772(8)	2785(4)	18(5)	2.134
S4	5821(6)	7418(1)	2360(5)	29(7)	1.959
		GII (vu)			0.113
		SrCu ₂	SiS ₄		
Atom	x	у	Z	U_{eq}	BVS
Sr1	0	4477(5)	1666(7)	10(6)	1.836
Si1	2819(3)	0	3333(3)	5(8)	4.077
Cu1	4067(2)	791(8)	773(3)	17(4)	1.079
S 1	4796(2)	271(2)	2223(0)	8(5)	1.998
S2	2349(2)	3242(2)	3279(1)	8(8)	2.038
		GII (vu)			0.071

Table S2 Atomic coordinates, isotropic displacement parameters, bond valencesums (BVS) and global instability index (GII) for title compounds.

GII can be derived from the bond valence concepts, which represents the tension of lattice parameters and is always used to evaluate the rationality of structure. The value of GII in a reliable structure should be limited at 0.05–0.2 in general. As for title compounds, calculated GII values are 0.051–0.113 vu, which illustrates that their crystal structures are reasonable.

compounds	Crystal system	Space group	compounds	Crystal system	Space group
BaAg ₂ GeS ₄	tetragonal	$I\overline{4}2m$	BaAg ₂ GeSe ₄	orthorhombic	<i>I</i> 222
BaAg ₂ SiSe ₄	tetragonal	$I\overline{4}2m$	BaAg ₂ SnSe ₄	orthorhombic	<i>I</i> 222
			BaAg ₂ SnS ₄	orthorhombic	<i>I</i> 222
BaCu ₂ GeS ₄	trigonal	<i>P</i> 3 ₁ 2 ₁	BaCu ₂ GeSe ₄	trigonal	<i>P</i> 3 ₁ 2 ₁
$BaCu_2SnS_4$	trigonal	<i>P</i> 3 ₂ 2 ₁	BaCu ₂ SnSe ₄	orthorhombic	Ama2
			BaCu ₂ SiSe ₄	trigonal	<i>P</i> 3 ₂ 2 ₁
BaNa ₂ GeS ₄	trigonal	R3c	BaNa ₂ GeSe ₄	trigonal	R3c
$BaNa_2SnS_4$	tetragonal	$I\overline{4}2d$	BaNa ₂ SnSe ₄	trigonal	R3c
BaLi ₂ GeS ₄	tetragonal	$I\bar{4}2m$	BaLi ₂ GeSe ₄	tetragonal	$I\overline{4}2m$
BaLi ₂ SnS ₄	tetragonal	$I\overline{4}2m$	BaLi ₂ SnSe ₄	tetragonal	$I\overline{4}2m$
			BaLi ₂ SiSe ₄	tetragonal	$I\overline{4}2m$
SrCu ₂ GeS ₄	trigonal	P3 ₂	SrCu ₂ GeSe ₄	orthorhombic	Ama2
SrCu ₂ SnS ₄	trigonal	<i>P</i> 3 ₁	SrCu ₂ SnSe ₄	orthorhombic	Ama2
SrNa ₂ GeS ₄	trigonal	R3c	SrLi ₂ GeS ₄	tetragonal	$I\bar{4}2m$
SrNa ₂ SnS ₄	trigonal	R3c	SrLi ₂ SnS ₄	tetragonal	$I\overline{4}2m$
SrNa ₂ SiS ₄	trigonal	R3c	SrCu ₂ SiS ₄	trigonal	<i>P</i> 3 ₁ 2 ₁
SrLi2SiS4	tetragonal	$I\overline{4}2m$			

Table S3. Structural comparison in I_2 -AE-M^{IV}-Q₄ (I = monovalent cations: Cu, Ag, Na, Li; AE = Ba, Sr; M^{IV} = Si, Ge, Sn; Q = S, Se) system.

	PbLi ₂ GeS ₄	EuLi2GeS4	BaLi ₂ GeS ₄	SrLi ₂ GeS ₄	BaLi ₂ SnS ₄	SrLi ₂ SnS ₄	SrLi ₂ SiS ₄
Δd (Å)	0.810	0.824	0.790	0.815	0.792	0.811	0.811

Table S4. Distortion degree $\Delta d = 2 - (c/a)$ in the Li-based CL sulfides.

compounds	damage energy (mJ)	spot diameter (mm)	LDT (MW/cm ²)	LDT (× AGS)*
AgGaS ₂	0.58	0.5	29.6	1
SrLi ₂ SiS ₄	12.03	0.5	614.2	21
$SrNa_2SiS_4$	9.85	0.5	504	17
SrCu ₂ SiS ₄	4.60	0.5	235	8
*AGS		=		AgGaS ₂

Table S5. LDTs of title compounds and $AgGaS_2$ (as the reference)

	$E_{g}(eV)$	d_{ij} (× AGS)	LDT (× AGS)*
BaLi ₂ GeS ₄	3.66	0.5	11
$BaLi_2SnS_4$	3.07	0.7	6.5
BaNa ₂ GeS ₄	3.70	0.3	8
$BaNa_2SnS_4$	3.27	0.5	5
SrLi ₂ GeS ₄	3.75	0.5	10
SrLi ₂ SnS ₄	3.1	0.8	5
SrNa ₂ GeS ₄	3.80	0.5	10
SrNa ₂ SnS ₄	3.12	0.8	6
$BaAg_2GeS_4$	2.02	1.7	3.2
$BaAg_2SnS_4$	1.77	0.4	1.5
$BaCu_2GeS_4$	2.47	0.3	1
$BaCu_2SnS_4$	1.96	0.3	1
SrLi ₂ SiS ₄	3.94	0.4	21
SrNa ₂ SiS ₄	3.87	0.4	17
SrCu ₂ SiS ₄	3.04	0.7	8

Table S6. Comparison on optical parameters of known compounds in the I_2 -AE-M^{IV}-S₄ system (I = Li, Na, Cu, Ag; AE = Ba, Sr; M^{IV} = Si, Ge, Sn).

 $*AGS = AgGaS_2$

Figure S1. SHG density of $SrNa_2SiS_4$ (a), $SrLi_2SiS_4$ (b) and $SrCu_2SiS_4$ (c).

5. References

- SAINT, version 7.60A; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2008.
- [2] Sheldrick, G. M. SHELXTL, version 6.14; Bruker Analytical Xray Instruments, Inc.: Madison, WI, 2003.
- [3] Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
- [4] Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798.
- [5] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. Z. Kristallogr. 2005, 220, 567.
- [6] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- [7] Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Phys. Rev. B 1990, 41, 1227.
- [8] Godby, R. W.; Schluter, M.; Sham, L. J. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 10159.