Supporting Information

Detection Range Extended 2D Ruddlesden-Popper Perovskite Photodetectors

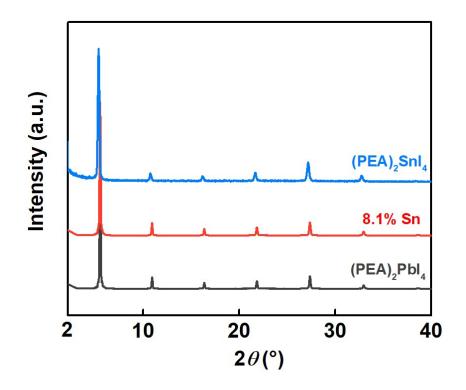
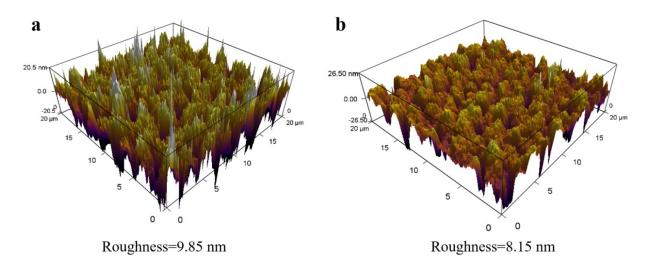
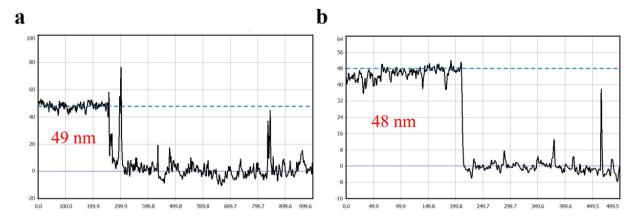
Yiyi Pan,^a Haoliang Wang,^b Xiaoguo Li,^a Xin Zhang,^c Fengcai Liu,^a Meng Peng,^b Zejiao Shi,^a Chongyuan Li,^a Haijuan Zhang,^a Zhenhua Weng,^a Meenakshi Gusain,^a Huabao Long, ^d Dapeng Li, ^d Jiao Wang,^a Yiqiang Zhan^{*a} and Lirong Zheng^a

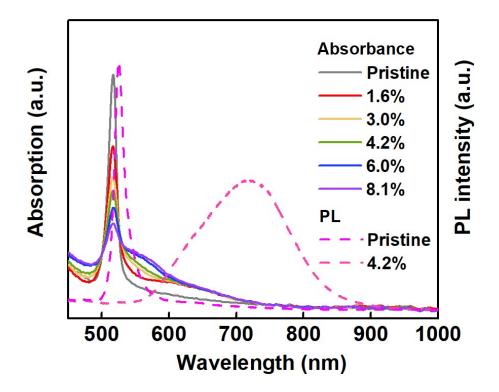
^aCenter for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, China. E-Mail: yqzhan@fudan.edu.cn

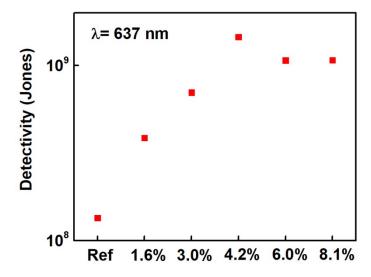
^bState Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.

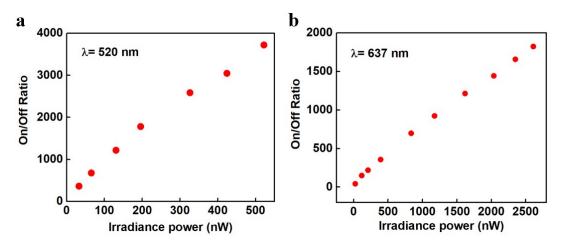
^cAcademy for Engineering & Technology, Fudan University, Shanghai 200433, China

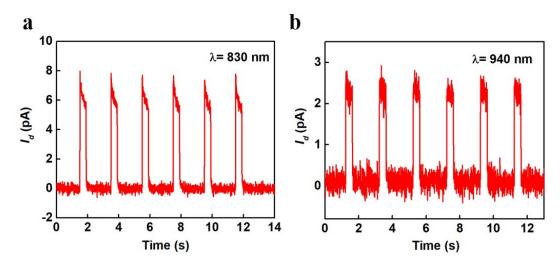
^dShanghai Aerospace Control Technology Institute, 1555 Zhong Chun Road, Shanghai 201109, China.


Figure S1. XRD patterns of $(PEA)_2PbI_4$, $(PEA)_2SnI_4$ and 8.1% Sn-doped $(PEA)_2PbI_4$ perovskite films.


Figure S2. 3D AFM images of a) $(PEA)_2PbI_4$ and b) 4.2% Sn-doped $(PEA)_2PbI_4$ perovskite films show r.m.s roughness of 9.85 and 8.15 nm, respectively.


Figure S3. a) the thickness of 2D (PEA)₂PbI₄ perovskite film. b) the thickness of 4.2% Sn-doped (PEA)₂PbI₄ perovskite film.


Figure S4. Absorbance spectra (solid line) and PL spectra (dash line) of (PEA)₂PbI₄ and Sn-doped (PEA)₂PbI₄ perovskite films with different doping concentration.

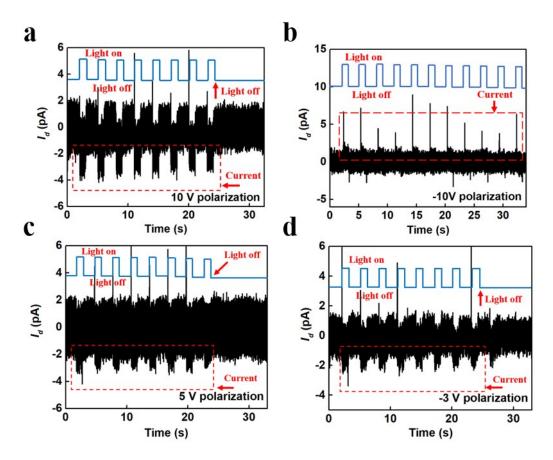

Figure S5. Detectivity of pristine and Sn-doped (PEA)₂PbI₄ devices under 637 nm light illumination with irradiance power of 48.9 μ W at V_d =10 V.

Figure S6. On/off ratio of the Sn-doped $(PEA)_2PbI_4$ device as a function of the light power intensity. a) under 520 nm light illumination. b) under 637 nm light illumination.

Figure S7. The time-dependent photocurrent measurement of 4.2% Sn-doped (PEA)₂PbI₄ perovskite photodetectors under a) 830 nm light illumination and b) 940 nm light illumination.

Figure S8. The time dependence of current of 4.2% Sn-doped (PEA)₂PbI₄ perovskite photodetectors under 637 nm light illumination after a) 10 V b) -10 V c) 5 V and d) -3 V polarization.