Electronic Supplementary Information

High thermoelectric performance of slight Sb doped PbTe alloys

Tingting Chen¹, Kaiqi Zhang¹, Hongchao Wang^{1,2*}, Wenbin Su¹, Fahad Mehmood¹,

Teng Wang¹, Jinze Zhai¹, Xue Wang¹, Taichang Huo¹, Chunlei Wang^{1#}

1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan, China.

2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China.

* E-mail: <u>wanghc@sdu.edu.cn</u> (H. Wang)

[#] E-mail: <u>wangcl@sdu.edu.cn</u> (C. Wang)

Defect formation energy calculation. Defect formation energy was calculated using the density functional theory (DFT) method via the Vienna ab initio simulation package (VASP). A method combining the projector augmented wave (PAW) method with the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE) was applied. A plane wave cuto \Box energy of 500 eV, an electronic convergence criterion of 10⁻⁵ eV, and the Monkhorst-Pack method with 7×7×7 k-mesh were used. The magnetic moment of 0.6 (*z* axis) in order to consider the spin-orbit coupling effect.

The formation energy of Pb or Te vacancy was calculated using Eq. $(1)^1$:

$$E_f(\mathbf{V}_{\mathbf{M}}) = E_{tot}(\mathbf{V}_{\mathbf{M}}) + E(\mathbf{M}_{\text{bulk}}) - E_{tot}$$
(1)

where M represents the Pb or Te atoms, and E_{tot} and E_{tot} (VM) are the total energies of the supercell before and after the introduction of the additional Pb or Te vacancy respectively, $E(M_{bulk})$ is the energy of a single Pb or Te in its ground state bulk phase. The formation energy of the substitutional Sb in Pb or Te site was calculated using Eq. (2)²:

$$E_f(Sb_M) = E_{tot}(Sb_M) + E(Sb) - E_{tot} - E(M)$$
⁽²⁾

where M represents the Pb or Te atoms, and E_{tot} and E_{tot} (Sb_M) are the total energies of the supercell before and after the Sb substituting Pb or Te site respectively, E(Sb) and E(M) are the energy of a single Sb atom and Pb or Te atom in its ground state bulk phase, respectively.

Thermal conductivity calculation. Theoretical lattice thermal conductivity, k_L , was calculated by the Boltzmann transport equation basing on the Debye model as shown in Eq. (3):

$$\kappa_L = \frac{\kappa_B}{2\pi^2 v_a} \left(\frac{\kappa_B T}{\mathsf{h}}\right)^3 \int_0^{\theta_D/T} \tau_C \frac{e^x}{\left(e^x - 1\right)^2} x^4 dx \tag{3}$$

Where κ_L is the lattice thermal conductivity, \hbar is the reduced Plank constant, κ_B is the Boltzmann constant, T is absolute temperature, θ_D is the Debye temperature, v_a is an averaged phonon group velocity, x is a dimensionless quantity defined by $x = \hbar \omega / \kappa_B T$ (where ω is the phonon frequency) and τ_c is the combined phonon scattering relaxation time calculated by Callaway model as shown in Eq. (4) to (9)^{3, 4}:

$$\tau_{C}^{-1} = \tau_{N}^{-1} + \tau_{U}^{-1} + \tau_{PD}^{-1}$$
(4)

where τ_N , τ_U , and τ_{PD} are the relaxation times of Normal scattering, Umklapp

scattering and alloying, respectively. Each relaxation time was evaluated as in Eq. (5) - (7).

$$\tau_U^{-1} = \frac{\mathbf{h}\gamma^2}{Mv_a^2\theta_D}\omega^2 Texp(-\theta_D/3T)$$
(5)

$$\tau_N^{-1} = \beta \tau_U^{-1} \tag{6}$$

$$\tau_{PD}^{-1} = \frac{\omega^4 V_0}{4\pi v_a^3} \Gamma_M \tag{7}$$

Here, γ , M, V_0 , β , Γ are the Grüneisen parameter, the average mass of an atom, the volume per atom, the ratio of normal phonon scattering to Umklapp scattering, and the mass-fluctuation phonon scattering parameter, respectively. The relation of the average group velocity v_a , is represented as in Eq. (8), where v_L is the longitudinal sound velocity and v_T is the transversal sound velocity.

$$v_{a} = \left[\frac{1}{3}\left(\frac{1}{v_{L}^{3}} + \frac{2}{v_{T}^{3}}\right)\right]^{-\frac{1}{3}}$$
(8)

The mass-fluctuation phonon scattering parameter Γ is represented as in Eq. (9), where f_i is the fractional concentration of the atom and M_i is the atomic mass of each atom *i*.

$$\Gamma = \sum_{i} f_{i} \left(1 - \frac{M_{i}}{M_{avg}} \right)^{2}$$

$$M_{avg} = \sum_{i} f_{i} M_{i}$$
(9)

Required parameters are the followings. Phonon group velocities were chosen as 2919 m/s for the longitudinal mode and 1620 m/s for the transverse mode⁵, Debye temperature and Grüneisen parameter ware set to be 136 K and 1.96⁶. β was picked as a fitting parameter as chosen as 2.1,

Compositions	Lattice constants(Å)	Experimental Density (g/cm ³)	Theoretical Density (g/cm ³)	Relative density(%)
x=0.2%	6.4609	8.040	8.245	98
x=0.5%	6.4616	8.013	8.235	98
x=0.7%	6.4618	7.976	8.230	97
x=1.0%	6.4608	8.108	8.228	98
x=1.2%	6.4591	8.053	8.230	98
x=1.5%	6.4618	7.995	8.213	97

Table S1. Lattice constants, experimental densities, theoretical densities and relativedensities for $Pb_{1-x}Sb_xTe$ alloys.

Figure S1 Temperature dependence of (a) the heat capacities derived from the equation of Cp (k_B atom)=3.07+4.7×10⁻⁴×(T/K-300)⁷, (b) the Lorenz numbers calculated from the equation of L=1.5+exp(-|S|/116)⁸, (c) the thermal diffusivities, and (d) the electronic thermal conductivities for Pb_{1-x}Sb_xTe alloys.

Figure S2 XRD patterns with Rietveld refinement of $Pb_{1-x}Sb_xTe$ bulk alloys for (a) x=0.2%, (b) x=0.5%, (c) x=0.7%, (d) x=1.0% (e) x=1.2%, and (f) x=1.5%.

Figure S3 Comparison of **(a)** electrical conductivity, **(b)** Seebeck coefficient and **(c)** thermal conductivity for 1.5% Sb doped PbTe alloys in this work and reported work.

Figure S4 The resistance dependence of the ratio of magnetic field intensity to Pb₁. _xSb_xTe samples thickness (*B/t*) for (a) x=0.2%, (b) x=0.5%, (c) x=0.7%, (d) x=1.0% (e) x=1.2%, and (f) x=1.5%. The slope of the resistance versus *B/t* is the Hall coe \Box cient (*R_H*).

Reference

- 1. X. Zhang, J. Li, X. Wang, Z. Chen, J. Mao, Y. Chen and Y. Pei, *Journal of the American Chemical Society*, 2018, **140**, 15883-15888.
- J. Li, X. Zhang, X. Wang, Z. Bu, L. Zheng, B. Zhou, F. Xiong, Y. Chen and Y. Pei, *Journal of the American Chemical Society*, 2018, 140, 16190-16197.
- 3. J. Callaway and H. C. von Baeyer, *Physical Review*, 1960, **120**, 1149-1154.
- 4. B. Abeles, *Physical Review*, 1963, **131**, 1906-1911.
- 5. L. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang and J. He, *Energy & Environmental Science*, 2017, **10**, 2030-2040.
- 6. J. He, S. N. Girard, M. G. Kanatzidis and V. P. Dravid, *Advanced Functional Materials*, 2010, **20**, 764-772.
- 7. R. Blachnik and R. Igel, *Zeitschrift für Naturforschung B*, 1974, **29**, 625–629.
- H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, *APL Materials*, 2015, 3, 041506.