Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This

journal is © The Royal Society of Chemistry 2019

Enhancing the coercivity of SmCo₅ through particle size control

Hao Tang^{a,b,c}, Mohammad Aref Hasen Mamakhel^a, and Mogens. Christensen^{a,b,*}

^aCenter for Materials Crystallography (CMC), Department of Chemistry, Aarhus University, Aarhus C-8000, Denmark

^bInterdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C-8000, Denmark

^cInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, PR China

*Corresponding author: <u>mch@chem.au.dk</u>

Figure S1 XRD patterns of different precursors (a) and H₂-precursor (b). The different phases are identified by the JCPDS-PDF cards (NO.06-0117, Sm(OH)₃; NO.02-0925, Co(OH)₂; NO. 26-1107, CoO(OH); Sm₂O₃; NO.25-1071; NO.42-1467, Co₃O₄; NO.150806, Co). As the XRD measurement was done in the air, the surface of Co nanoparticles was oxidized slightly, resulting in the small peaks of Co₃O₄.

Figure S2 TEM images of T1, T3, and T5 precusors, the scale bar is 100 nm.

Figure S3 HRTEM images of T8 precursor in another region including the thin and thick nanoplates on the same time. (a) The overview TEM image. (b) and (c) The HRTEM images of region 1 (thin plate) and region 2 (thicker plate). The region 1 has multiple lattice fringes, and in order to avoid repeating measurements, we did the FFT (Fast Fourier Transform) of this region to obtain reciprocal lattices (d). It includes the (003), (102), and (104) planes of CoO(OH) phase indicated by red color and the (001) plane of Co(OH)₂ phase indicated by yellow color. The region 2 includes a d-spacing of 2.82 Å and a d-spacing of 3.33 Å, corresponding to the (100) and (101) planes of Co(OH)₂, respectively.

Figure S4 (a) Scanning transmission electron microscopy (STEM) image of H₂-precursor (T8 sample). (b)

Figure S5 The trend of mean particle size with increasing reaction time

Figure S6 XRD patterns of SmCo5 particles with longer sintering time at 900 °C.

Figure S7 The characterization of $SmCo_5$ particles with longer sintering time at 900 °C. The sintering time for all samples is 0.5 h in this work, but we want to make particles grow with a big mean particle size. (a) The SEM image of T8 sample sintered for 1h. (b) The SEM image of T8 sample sintered for 2h. (c) the SEM image of T8 sample sintered for 4h. The corresponding particle size distributions are displayed in the second column. The mean particle size is calculated from fitted data using a lognormal function, plotted by a red line.

Figure S8 Hysteresis loops of T8 sample sintered at 900 °C for different time (1h, 2h, and 4h).

Figure S9 Hysteresis loops of T8 sample measured at varied angles between the pressing direction and magnetic field direction.

Table S1 the refined values for weight fractions of different phases, unit cell parameters, and reliable factors for all samples are listed in this table. The R_{wp} values of T1 and T3 samples are much higher than other samples due to the exiting of multiple impurity phases.

	Phase	Weight fraction (wt %)	Unit Cell Parameters (Å)		P (%)	P (%)	P (%)
	FildSe		a=b	c	nf (10)	Nbragg (70)	N _{wp} (70)
T1	SmCo₅	63.8(4)	4.99366(8)	3.96791(8)	5.2	6.0	10.1
	Sm ₂ Co ₁₇	28.1(3)	8.41167(22)	12.21187(60)	16.7	23.1	
	Sm ₂ Co ₇ -R	8.1(3)	5.03202(32)	36.39871(500)	25.4	29.9	
Т3	SmCo₅	72.3(9)	4.98810(8)	3.97121(8)	4.7	6.6	11.4
	Sm ₂ Co ₁₇	17.1(7)	8.40620(41)	12.22940(126)	19.1	25.1	
	Sm ₂ Co ₇ -H	5.2(4)	4.67503(48)	24.74645(568)	30.6	36.8	
	SmCo ₇	5.4(4)	4.87174(37)	4.12466(65)	15.7	21.5	
Т5	SmCo₅	83.5(8)	4.99888(6)	3.95962(5)	3.3	3.6	- 6.9
	Sm ₂ Co ₇ -R	16.5(4)	5.03379(16)	36.39214(237)	18.7	17.6	
Т8	SmCo₅	90.2(6)	4.99554(5)	3.95959(5)	4.0	4.9	6.5
	Sm ₂ Co ₇ -R	9.8(5)	5.02677(36)	5.02677(532)	29.9	27.8	
T12	SmCo₅	100.0(5)	4.99245(5)	3.96152(4)	3.5	3.6	5.3
T16	SmCo₅	100.0(5)	4.98589(6)	3.96274(5)	4.4	3.2	5.3