Supporting Information

Built-in voltage enhanced by in-situ electrochemical polymerized undoped conjugated hole-transporting modifier in organic solar cells

Yanxun Li^{a, b, †}, Xianglang Sun^{c, †}, Xuning Zhang^d, Dongyang Zhang^d, Haoran Xia^d, Jiyu Zhou^d, Nafees Ahmad^{a, b}, Xuanye Leng^{a, b}, Shuo Yang^{a, b}, Yuan Zhang^d, Zhongan Li^{c, *}, Huiqiong Zhou^{a, *}

^{a.} CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China

- ^{b.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- ^{c.} Huazhong University of Science and technology, Wuhan, 430074, P. R. China
- ^{d.} School of Chemistry, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P.

R. China

[†] These authors have equally contributed to this work.

Keywords: Electropolymerized Film, Work Function, Recombination, Charge Extraction, Built-in Voltage

Fig. S1. The 1H NMR spectrum of TPCF, conducted in Chloroform-d.

Fig. S2. The HR-MS spectrum of TPCF

¹H NMR (600 MHz, Chloroform-*d*, which was exhibited in Figure S1) δ 8.24 – 8.15 (m, 10H, ArH), 8.14 (d, *J* = 6.7 Hz, 1H, ArH), 7.93 – 7.89 (m, 2H, ArH), 7.83 (d, *J* = 7.0 Hz, 1H, ArH), 7.81 – 7.77 (m, 3H, ArH), 7.64 – 7.56 (m, 10H, ArH), 7.49 (dd, *J* =

8.2, 7.0 Hz, 2H, ArH), 7.46 (d, J = 8.1 Hz, 4H, ArH), 7.42 – 7.38 (m, 4H, ArH), 7.37 – 7.33 (m, 2H, ArH), 7.31 (t, J = 7.4 Hz, 4H, ArH). ¹³C NMR (101 MHz, CDCl₃, which was shown in Figure S2) δ 141.01, 140.85, 139.71, 139.51, 139.44, 139.27, 139.06, 138.75, 137.18, 136.80, 136.35, 136.20, 133.58, 133.44, 131.70, 131.58, 129.07, 128.60, 128.50, 126.98, 126.69, 126.07, 126.04, 125.90, 123.71, 123.66, 123.54, 123.44, 120.63, 120.51, 120.41, 120.35, 120.12, 120.00, 109.88, 109.67. HRMS (ESI): (M+H)⁺ = 926.3221 (calcd for C₇₀H₄₄N₃⁺, 926.3530).

Fig. S3. a) Fourier transform infrared spectra of monomer film(the black one) and EP film (the red one). b) The chemical structure of p-TPCF.

Fig. S4. Fluorescence spectrum of Electro-polymerization film(Red line) and monomer film(Black line).

Fig. S5. Thickness data of a) PEDOT:PSS film, b) PEDOT:PSS film experienced CV process in solvent without monomer and c) PEDOT:PSS/EP film obtained by ellipsometer.

HTL	Thickness (nm)
PEDOT:PSS	53.05
PEDOT:PSS/ CV (w/o EP film) a	52.62
PEDOT:PSS/EP film	53.05 / 6.79 ^b

Table S1. The thickness parameters measured by ellipsometer.

^{a.} The PEDOT:PSS film treated by CV process in solvent (CH₃CN:CH₂Cl₂=1:4) without monomer. ^{b.} PEDOT:PSS thickness/EP film thickness.

Fig. S7. a) CV test of p-TPCF EP film. In this test, ferrocene is applied as calibration. b) UV-Vis absorbance spectra of EP-film. $E_{gap}=1240/\lambda$ ($\lambda = 505$ nm)

Table S2. Parameters of p-TPCF including E_{gap} , HOMO and LUMO.				
Film	Film E _{gap} (eV)		LUMO (eV)	
p-TPCF	2.46	-5.3	-2.84	

Fig. S8. J-V curves of devices with EP film polymerized on PEDOT:PSS in different scan rate.

Scan rate of CV	V _{oc}	$\mathbf{J}_{\mathbf{sc}}$	FF	PCE
(V/s)	(V)	(mA/cm ²)	(%)	(%)
0.05	0.80	15.96	57.97	7.40
0.10	0.80	16.98	66.21	8.99
0.20	0.78	15.40	53.99	6.48
0.30	0.74	15.42	47.96	5.47

Table S3. Parameters of EP film polymerized on PEDOT:PSS in different scan rate.

Fig. S9. J-V characteristics of devices with bare PEDOT:PSS (black), PEDOT:PSS/CV (w/o EP film) (pink), bare EP film (blue) and PEDOT:PSS/EP film (red).

Fig. S10. J-V characteristics at different light intensities of organic solar cells a) without EP-film modified and b) with EP-film modified.

Fig. S11. Transient photocurrent characterization of devices with various HTLs.