Design of large π -conjugated α -cyanostilbenes derivatives as colorimetric sensors for volatile acids and organic amines gases

Xinhua Cao,* Yiran Li, Qingqing Han, Aiping Gao, Bingya Wang, Xueping Chang and Ji-ting Hou* College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan & Green catalysis and synthesis key laboratory of Xinyang city, Xinyang Normal University, 237 Southlake Road, Xinyang 464000, P. R. China

Scheme S1 The synthesis routine of M-PDC and P-PDC.

Synthesis of M-PDC: m-Phenylenediacetonitrile (1.00 g, 6.40 mmol), 4-dimethylaminocinnamaldehyde (2.24 g, 12.80 mmol) and sodium-t-butoxide (1.84 g, 19.20 mmol) were added to anhydrous ethanol (25 mL). The mixture was heated to reflux and kept overnight. After the reaction was over, a large precipitate was produced. The precipitate was filtrated and washed with ethanol for many times. The reddish brown powder was obtained with the yield of 70%. ¹HNMR (600 MHz, CDCl₃): 7.75 (s, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 6H), 7.41 (t, J = 7.8 Hz, 4H), 7.20 (t, J = 11.4 Hz, 2H), 7.02 (s, 1H), 6.99 (s, 1H), 6.69 (d, J = 9.0 Hz, 4H), 3.03 (s, 12H), ¹³CNMR (150 MHz, CDCl₃): 151.5, 145.7, 143.9, 143.7, 143.1, 140.2, 134.7, 131.2, 129.5, 125.2, 123.7, 120.6, 118.1, 40.3. HRMS calculated for $C_{32}H_{31}N_4$ [M+H]⁺ 471.2549, found: 471.2548.

Synthesis of P-PDC: p-Phenylenediacetonitrile (1.00 g, 6.40 mmol), 4-dimethylaminocinnamaldehyde (2.24 g, 12.80 mmol) and sodium-t-butoxide (1.84 g, 19.20 mmol) were added to anhydrous ethanol (25 mL). The mixture was heated to reflux and kept overnight. After the reaction was over, a large precipitate was produced. The precipitate was filtrated and washed with ethanol for many times. The nut-brown powder was obtained with the yield of 77%. ¹HNMR (600 MHz, CDCl₃): 7.66 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 4.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.47-7.42 (m, 4H), 7.33 (d, J = 8.4 Hz, 1H), 7.22-7.12 (m, 2H), 7.01 (t, J = 8.4 Hz, 2H), 6.92 (d, J = 15.0 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.69 (d, J = 8.4 Hz, 3H), 6.65 (d, J = 8.4 Hz, 1H), 3.03 (s, 12H), ¹³CNMR (150 MHz, CDCl₃): 151.5, 143.1, 142.8, 133.7, 129.6, 129.4, 125.7, 125.5, 123.8, 120.7, 117.8, 40.3. HRMS calculated for C₃₂H₃₁N₄ [M+H]⁺ 471.2549, found: 471.2548.

Fig. S1 The visual images of solutions M-PDC and P-PDC in different solvents. The upper and lower were under daylight and 365 nm light, respectively. The solution concentration was all 10⁻⁵ M.

compound solvent	Absorption	band (nm)	Log ε (L r	$nol^{-1} cm^{-1}$)	Fluorescence intensity (nm)			
	M-PDC	P-PDC	M-PDC	P-PDC	M-PDC	P-PDC		
dioxane	428	469	4.84	4.81	546	580		
toluene	435	476	4.87	4.51	543	601		
acetontrile	436	472	4.80	4.18	582	656		
ethyl acetate	426	469	5.01	4.46	557	610		
DMF	443	488	4.88	4.77	586	665		
THF	432	476	4.82	4.81	562	617		
acetone	434	475	4.70	4.36	577	645		
CH ₂ Cl ₂	437	474	4.46	4.73	562	617		
DMSO	452	489	5.05	4.84	594	674		

Table S1 The photophysical properties of M-PDC and P-PDC in different solvents.

Fig. S2 The visual images of solutions M-PDC (a and a') and P-PDC (b and b') in CH₂Cl₂ with different concentration. The upper and lower were under daylight and 365 nm light, respectively. The concentration of solution M-PDC and P-PDC from left to right were 10⁻⁶, 10⁻⁵, 10⁻⁴ and 10⁻³ M.

Fig. S3 Concentration-dependent fluorescence emission spectra of solutions M-PDC (a) and P-PDC (b) in CH₂Cl₂.

Table S2 The quantum yields and fluorescence lifetime of M-PDC and P-PDC in different solvents.

Fig. S4 Lifetime decay profiles ($\lambda ex = 450$ nm,monitored at their maximum emission wavelength) of M-PDC and P-PDC in different solvents. The solution concentration was all 10⁻⁵ M.

 $\label{eq:Fig.S5} \textbf{Fig. S5} \ The visual images of solutions \ \textbf{M-PDC} \ and \ \textbf{P-PDC} \ in \ \ CH_2Cl_2 \ with \ addition \ of \ different \ volatile \ acids: a) \ formic \ acid; b) \ acetic$

acid; c) propionic acid; d) HNO3; e) HCl; f) TFA. The solution concentration was all 10-5 M.

Fig. S6 The absorption spectra of M-PDC and P-PDC and complexes M-PDC-2H and M-PDC-2H obtained from DFT calculation: a) for compound M-PDC, b) for complex M-PDC-2H, c) for compound P-PDC, d) for complex P-PDC-2H.

Fig. S7. Cyclic voltammograms of solution **P-PDC** (10^{-5} M) in acetonitrile with gradual addition of TFA in the present of 0.5 M tetrabutylammonium hexafluorophosphate as electrolyte.

Table \$2 Detection limit of M BDC town	d TEA and TEA in CU CI	by abaarbanaa abangaa at 127 mm
Table 55 Delection mint of MI-PDC lowar	$10 \text{ IFA and IEA in CH}_2Ch$	₂ by absorbance changes at 45 / min

n	1	2	3	4	5	6	7	8	9	10	11
Absorbance	1 739	1 740	1 739	1 739	1 738	1 739	1 740	1 738	1 738	1 740	1 741
(Xn)	1.757	1.740	1.757	1.757	1.750	1.757	1.740	1.750	1.750	1.740	1./41

 $X_{average} = 1.739 \quad \sigma_{wb} = sqrt(\sum (X_n \text{-} X_{average})^2 / n) = 8.8 \times 10^{-7}$

The detection limit: $[TFA] = 3\sigma/b = 2.0 \text{ nM}$

$$[TEA] = 3\sigma/b = 1.76 \text{ nM}$$

Fig. S8 The linear fitting curve of absorbance change of M-PDC solution with the addition of TFA (a) and M-PDC with 550.0 eq. of TFA with addition of TEA (b).

n	1	2	3	4	5	6	7	8	9	10	11
Absorbance	0.787	0.787	0.786	0.786	0.786	0.785	0.785	0.789	0.780	0.780	0.784
(Xn)	0.787	0.787	0.780	0.780	0.780	0.785	0.785	0.788	0.789	0.789	0.764

Table S4 Detection limit of P-PDC toward TFA and TEA in CH₂Cl₂ by absorbance changes at 485 nm

 $X_{average} = 0.786545$ $\sigma_{wb} = sqrt(\sum (X_n - X_{average})^2/n) = 0.00000243$

The detection limit: $[TFA] = 3\sigma/b = 8.82 \text{ nM}$

$$[TEA] = 3\sigma/b = 3.47 \text{ nM}$$

Fig. S9 The linear fitting curve of absorbance change of solution P-PDC with the addition of TFA (a) and P-PDC with 650.0 eq. of TFA

with addition of TEA.

Table S5 Detection limit of film M-PDC+CTAB toward TFA gas by fluorescence emission changes at 611 nm.

n	1	2	3	4	5	6	7	8	9	10	11
Intensity	226.0	225.0	2257	225.1	225.1	226.2	2257	225.2	225.1	225.1	226.0
(Xn)	520.0	525.9	323.7	525.1	525.1	520.5	525.7	323.5	525.1	525.1	520.0

 $X_{average} = 325.6$ $\sigma_{wb} = sqrt(\sum (X_n-X_{average})^2/n) = 0.181983$

The detection limit: [TFA] = $3\sigma/b = 17.4$ ppm

Table S6 Detection limit of film P-PDC+CTAB toward TFA gas by fluorescence emission changes at 672 nm

n	1	2	3	4	5	6	7	8	9	10	11
Intensity	207.0	208.0	208.0	207.9	200 0	207.9	200.2	207.9	207.7	200.2	207.6
(Xn)	207.9	208.0	208.0	207.8	208.0	207.8	208.5	207.8	207.7	208.5	207.0

 $X_{average} = 207.9$ $\sigma_{wb} = sqrt(\sum(X_n-X_{average})^2/n) = 0.04561983$

The detection limit: $[TFA] = 3\sigma/b = 2.37$ ppm

Fig. S10 UV-vis absorption spectra of solution **M-PDC** in different solvents before and after addition of 500 eq. of TFA. The concentration of solution **M-PDC** in different solvents was 10⁻⁵ M.

Fig. S11 Fluorescence emission spectra of solution M-PDC in different solvent before and after addition of 500 eq. of TFA. The concentration of solution **M-PDC** in different solvents was 10⁻⁵ M.

Fig. S12 UV-vis absorption spectra of solution **P-PDC** in different solvent before and after addition of 500 eq. of TFA. The concentration of solution **P-PDC** in different solvents was 10⁻⁵ M.

ig. S13 Fluorescence emission spectra of solution P-PDC in different solvent before and after addition of 500 eq.

of TFA. The concentration of solution **P-PDC** in different solvents was 10^{-5} M.

Fig. S15 Fluorescence emission spectra change of solutions M-PDC (a) and P-PDC (b) in CH₂Cl₂ (10⁻³ M)

with addition of different amount of CTAB.

Fig. S16 Images of films M-PDC+CTAB and P-PDC+CTAB with contacting TFA and TEA gases in turn.

Fig. S17 Images of film **M-PDC**+CTAB (a and b) and **P-PDC**+CTAB (c and d) from CH₂Cl₂ with different gaseous acids and then organic amine vapors.

Fig. S18 The schematic of the test device.