Supporting Information

An efficiently enhanced UV-visible light photodetector with a Zn: NiO/p-Si isotype heterojunction

Yongfang Zhang,^a Tao Ji,^b Rujia Zou,^{*,a} Enna Ha,^b Xin Hu,^b Zhe Cui,^a Chaoting Xu,^a Shu'ang He,^a Kaibing Xu,^c Yihong Zhang^{*,a} and Junqing Hu^{*,a,b}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,

College of Materials Science and Engineering, College of Information Science and

Technology, Donghua University, Shanghai 201620, China. Email: rjzou@dhu.edu.cn

(R. Zou); zhangyh@dhu.edu.cn (Y. Zhang)

^b College of Health Science and Environmental Engineering, Shenzhen Technology

University, Shenzhen 518118, China. Email: hu.junqing@dhu.edu.cn or

hujunqing@sztu.edu.cn

^c Research Center for Analysis and Measurement, Donghua University, Shanghai,
201620, China

Supplementary Figures

Figure S1. (a) SEM image of the NiO films without Zn doping. (b) EDX pattern taken from the Zn:NiO films.

Figure S2. XRD patterns of the NiO films without Zn doping.

Figure S3. X-ray photoelectron spectroscopy of a full survey of the Zn:NiO/p-Si heterojunction.

Figure S4. XPS spectra of the undoped NiO/p-Si heterojunction. High resolution XPS

spectra for Ni (a) and O (b), respectively.

Figure S5. The valence band maximum of the cleaned Si substrate by analysing the XPS spectrum.

Figure S6. A photocurrent spectrum of the NiO/p-Si heterojunction photodetector with an applied bias of -1 V.

Figure S7. The J-V curve of the Zn:NiO/p-Si heterojunction device upon a bias from

-4 V to 4V under dark.

Figure S8. Band diagrams of the undoped NiO/p-Si heterojunction at the interface under a reverse bias.

Figure S9. Photocurrent responses of the Zn:NiO/p-Si heterojunction photodetector at

-1 V under 450 nm light illumination recorded before (raw data) and after one month.

Figure S10. Photocurrent responses of the undoped NiO/p-Si heterojunction photodetector at -1 V with a light density of 0.5 mW cm⁻² under 350 nm and 650 nm light illumination, respectively.

Figure S11. Photocurrent responses of the Zn-doped NiO/p-Si heterojunction photodetector under on/off light illumination at various applied voltage with a light density of 0.5 mW cm^{-2} .

Figure S12. Switch ratio of the Zn:NiO/p-Si heterojunction photodiode with various Zn-doping content at an applied voltage of -1 V under 450 nm light illumination (0.5 mW cm⁻²).

Figure S13. Spectral responsivity curves of the Zn-doped NiO/p-Si heterojunction photodetector in the range of 350-650 nm under a reverse bias of -0.5 V, -0.8 V, -1 V, -2 V, -3 V and -4 V, respectively.

Figure S14. XRD patterns (a) of the NiO thin film sample annealed at 300 °C, 700 °C and 900 °C, respectively. SEM images showing the surface views of the NiO thin film on the Si substrates annealed at 300 °C (b), 700 °C (c) and 900 °C (d), respectively.

Figure S15. EQE of the Zn:NiO/p-Si heterojunction photodiode annealed at 300 °C, 500 °C, 700 °C and 900 °C, respectively, with an applied voltage of -1 V under 450 nm light illumination.

Supplementary Table

Table S1. The measurement parameter values obtained by Hall measurement with theZn-doped and undoped NiO films.

Input value	I (nA)	В	D	D_T	MN	T (K)
	1.000	0.560	0.200	0.100	1000	300
Result			Undoped		Zn-doped	
Bulk concentration			8.459×10 ¹⁵		2.906×10 ¹²	
Mobility			1.850×10^{1}		5.730×101	
Resistivity			3.989×10 ¹		3.748×10 ⁴	
Average Hall Coefficient			7.379×10^{2}		2.148×10 ⁶	
AC Cross Hall Coefficient			6.593×10 ²		3.651×10 ⁵	
BD Cross Hall Coefficient			8.165×10 ²		4.661×10 ⁶	
Sheet Concentration			1.692×10 ¹¹		5.812×10 ⁷	
Conductivity			2.507×10-2		2.668×10-5	
Magneto-Resistance			1.341×10 ⁵		3.197×10 ⁸	