Supporting Information

Attenuating the Defect Activities with Rubidium Additive for Efficient and Stable Sn-Based Halide Perovskite Solar Cells

Dhruba B. Khadka, *ab Yasuhiro Shirai, c Masatoshi Yanagida, c and Kenjiro Miyano c

^aInterfacial Energy Conversion Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

^bInternational Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

^cGlobal Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

Corresponding Author

*E-mail: KHADKA.B.Dhruba@nims.go.jp

Table and Figures

Figure S1. SEM images of FASnI₃ films with RbCl additive (a) 0.02, (b) 0.06, and (c) 0.1.

Figure S2. XRD patterns of PMMA coated FASnI₃ film with 0-RbCl (a) and 0.08-RbCl i.e. (FA,Rb)SnI₃ (b) for fresh film and after 15 days stored under nitrogen ambient in glovebox. The XRD pattern of SnI₂ with 10% SnF₂ also has been displayed to evaluate the film deterioration. The pure FASnI3 film decomposes to SnI₂ with aging indicating rather unstable than FARbSnI₃.

Figure S3. J-V curves (a) and EQE spectra (b) of the $FA_{1-x}Rb_xSnI_3$ devices with different RbCl content (x=0-0.12).

Figure S4. The steady state J_{SC} and PCE of the encapsulated device (FASnI₃ with 0.08-RbCl) at 30 °C (~50% RH) under 1 sun measured under MPPT condition.

Figure S5. J-V characteristics of devices with FASnI₃ with different additives.

FASnI ₃ with	0-RbCl	0.08-RbI	0.08-RbCl	0.08-FAC1	FA rich: FAI-0.08%
Jsc (mA/cm2)	15.52	19.10	20.04	14.37	13.53
Voc (V)	0.382	0.430	0.487	0.390	0.302
FF	0.54	0.581	0.604	0.568	0.482
Rs $(\Omega \cdot cm2)$	4.57	3.33	3.25	4.73	4.97
Rsh (Ω·cm2)	1.89E2	1.20E3	1.53E3	1.05E3	2.02E2
η (%)	3.22	4.78	5.89	3.18	1.97

 Table ST1. Device parameters of the respective devices.

Figure S6. Statistics of device parameters for the devices with pristine FASnI₃ (0-RbCl) and 0.08-RbCl. Histogram of device parameters: (a) J_{SC} , (b) $V_{OC}(\eta)$, (c) *FF*, and (d) efficiency of 20 devices fabricated 4 different batches.

Figure S7. Stability data (solar cell parameter J_{SC} , V_{OC} , FF, and η) of encapsulated devices with pristine FASnI₃ (0-RbCl) and 0.08-RbCl stored under ambient conditions for 30 days. Note that the top images show the photos of aged devices with pristine FASnI₃ (0-RbCl) and 0.08-RbCl.

Figure S8. XPS spectra of FASnI₃ pristine (0-RbCl) (a, c) and with RbCl (b, d).

Table ST2. Summary of atomic percentage (atm %) of different elements on the surfaces of pristine FASnI₃ (0-RbCl) and with 0.08-RbCl additive, extracted from XPS analysis.

Sample	C1s (atm %)	N1s (atm %)	O1s (atm %)	F1s (atm %)	Cl2p (atm %)	Rb3d (atm %)	Sn3d5 (atm %)	I3d5 (atm %)	
Pristine	24.64	10.19	9.35	7.83	-	-	20.04	27.95	Ta
FASnI ₃	25.04	12.34	8.41	7.62	-	-	19.58	27.01	ble
FASnI ₃	27.24	7.02	8.31	4.14	3.14	1.38	19.45	28.91	ST
With RbCl									2
additive	27.05	6.09	9.2	4.92	2.34	1.47	19.64	29.19	3.

The constituents stoichiometry of Sn, I, X (I + Cl + F), and Rb on the surfaces of respective films calculated from XPS analysis.

Sample	Sn:I (1:~3)	Sn(1.1): X (3) (1:2.73)	Sn (1.1):Rb(0.08) (1:0.072)
FASnI ₃	1.0: 1.39	1: 1.78	-
Pristine	1: 1.38	1: 1.77	-
FASnI ₃	1: 1.49	1: 1.86	1: 0.0709
With RbCl additive	1: 1.48	1: 1.85	1: 0.0748

Figure S9. C-V analysis: Carrier profile for the FASnI₃ devices with out and with RbCl content.

Figure S10. Capacitance- frequency (C-f) spectra of FASnI₃ devices without and with RbCl content.

Figure S11. Capacitance response of $FASnI_3$ devices (0-RbCl and 0.08 RbCl). (a) C-f spectra at room temperature and capacitance response obtained at 10 Hz (b), 1 kHz (c), and 10 kHz with varying temperatures (230 to 350 K).