Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

(Na_{0.5}Bi_{0.5})_{0.7}Sr_{0.3}TiO₃ Modified by Bi(Mg_{2/3}Nb_{1/3})O₃ Ceramics with High Energy-Storage Properties and Ultrafast Discharge Rate

Ying Lin,*a Da Li,a Miao Zhanga and Haibo Yang*a

^a School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China

* Corresponding Authors

(Ying Lin*) Email: <u>linying 333@163.com</u>

(Haibo Yang*) Email: yanghaibo@sust.edu.cn

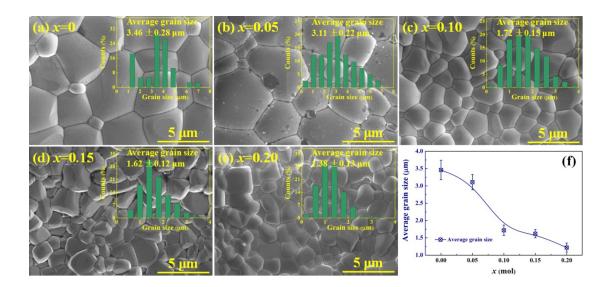


Figure S1. SEM of the natural surface for the (1-x)NBST-xBMN ceramics: (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15, (e) x=0.20. (f) Average grain sizes of the (1-x)NBST-xBMN ceramics.

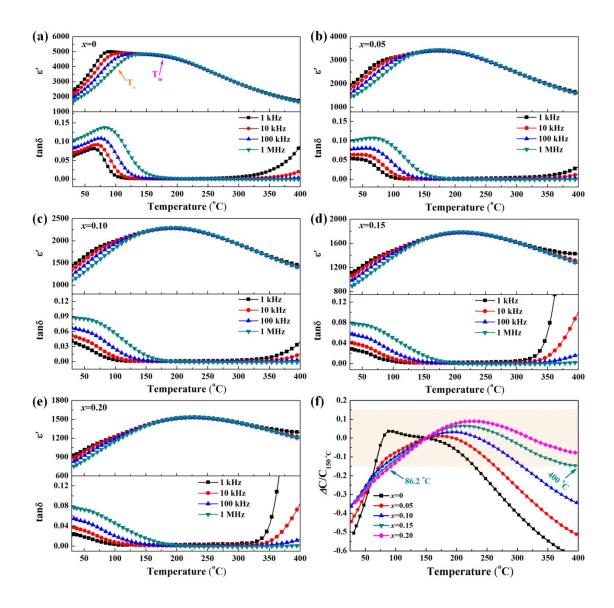


Figure S2. Temperature dependence of $\tan \delta$ and ε' of the (1-x)NBST-xBMN ceramics measured from 1 kHz to 1 MHz: (a) x=0, (b) x=0.05, (c) x=0.10, (d) x=0.15 and (e) x=0.20. (f) TCC of the (1-x)NBST-xBMN ceramics at a frequency of 1 kHz and a base temperature of 150 °C.