## **Supporting Information**

## Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding

Zhangshuo Liu,<sup>a‡</sup> Yu Zhang,<sup>a‡</sup> Hao-Bin Zhang,<sup>a\*</sup> Yang Dai,<sup>b</sup> Ji Liu,<sup>c</sup> Xiaofeng Li<sup>b</sup> and Zhong-Zhen Yu<sup>b\*</sup>

<sup>a</sup> Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China

<sup>b</sup> State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029, China

<sup>c</sup> College of Materials Science and Engineering, Hunan University, Changsha 410012, China

\*E-mail: <u>zhanghaobin@mail.buct.edu.cn</u> (H.-B. Zhang); <u>yuzz@mail.buct.edu.cn</u> (Z.-Z. Yu)

<sup>‡</sup> These authors contributed equally to this work.



**Fig. S1.** SEM images of (a)  $Ti_3AlC_2$  and (b) unexfoliated  $Ti_3C_2T_x$ . (c) AFM image of  $Ti_3C_2T_x$  sheets deposited on a silicon wafer. (d) XRD patterns of  $Ti_3AlC_2$ , unexfoliated  $Ti_3C_2T_x$  and  $Ti_3C_2T_x$ .



Fig. S2. AFM image and size distribution of MXene sheets.



**Fig. S3.** Digital images of an aqueous mixture of MXene (left) and a suspension of MXene with Al<sup>3+</sup> (right).



Fig. S4. EDS spectra of MXene and MXene-Al films.



Fig. S5. Tensile stress-strain curves of pristine MXene film, and MXene-Al films.



Fig. S6. The concentrations of Al in MXene-Al film.

|                 | Tensile<br>stress                                 | ; 20,97  | Fracture |           |
|-----------------|---------------------------------------------------|----------|----------|-----------|
| MXene sheets hy | drogen bonds ———————————————————————————————————— | ic bonds |          | <br> <br> |

Fig. S7. Schematic illustrating tensile fracture process of the MXene-Al film.



**Fig. S8.** Total EMI shielding effectiveness (SE<sub>T</sub>), absorption (SE<sub>A</sub>) and reflection (SE<sub>R</sub>) mechanism in pristine MXene and MXene-Al- II film.

The total SE ( $SE_{Total}$ ) and its components of absorption ( $SE_A$ ) and reflection ( $SE_R$ ) are determined on the basis of the measured S parameters:

$$R = 10^{(S_{11}/10)}$$
(1)  

$$T = 10^{(S_{21}/10)}$$
(2)  

$$A = 1 - R - T$$
(3)

Where R is the reflection coefficient, A is the absorption coefficient, and T is the transmission coefficient. The total EMI SE ( $SE_{Total}$ ) is the sum of reflection ( $SE_R$ ), absorption ( $SE_A$ ), and multiple reflections ( $SE_M$ ), and their relationships are expressed using the following equations:

$$SE_{Total} = SE_R + SE_A + SE_M \tag{4}$$

$$SE_R(dB) = -10\log_{10}(1 - R)$$
 (5)

$$SE_A(dB) = -10\log_{10}(T/(1-R))$$
 (6)

| Sample      | Strength<br>(MPa) | Toughness<br>(MJ m <sup>-3</sup> ) | Strain (%)    | Young's<br>modulus<br>(GPa) | Conductivity<br>(S cm <sup>-1</sup> ) |
|-------------|-------------------|------------------------------------|---------------|-----------------------------|---------------------------------------|
| MXene       | $28.7 \pm 4.3$    | $0.332 \pm 0.045$                  | $2.2 \pm 0.3$ | $2.05 \pm 0.12$             | $3143 \pm 68$                         |
| MXene-Al I  | 53.8 ± 2.9        | $0.496 \pm 0.068$                  | 1.6 ±0.1      | $4.50 \pm 0.26$             | $2733 \pm 37$                         |
| MXene-Al I  | 83.2±1.7          | $0.657\pm0.076$                    | $1.8 \pm 0.2$ | $7.42 \pm 0.12$             | $2656\pm48$                           |
| MXene-Al II | 73.1±3.9          | $0.645 \pm 0.033$                  | $1.6 \pm 0.1$ | $6.24 \pm 0.16$             | $2059 \pm 51$                         |
| MXene-Al Ⅳ  | 53.6± 2.3         | $0.363 \pm 0.038$                  | $1.3 \pm 0.0$ | $5.74\pm0.08$               | $1018 \pm 14$                         |
| MXene-Al V  | 51.7± 0.3         | $0.230 \pm 0.051$                  | $0.8\pm0.2$   | $7.64 \pm 1.40$             | $926 \pm 40$                          |

**Table S1.** Mechanical properties and conductivities of MXene and MXene-Al films.

| Sample                                                      | Thickness | EMI SE | SE/t                   | Strength | Conductivity         | Defe  |
|-------------------------------------------------------------|-----------|--------|------------------------|----------|----------------------|-------|
|                                                             | (mm)      | (dB)   | $(dB \text{ cm}^{-1})$ | (MPa)    | (S m <sup>-1</sup> ) | Kels. |
| CNT sponge/epoxy                                            | 2         | 33     | 165                    | 79.2     | 516                  | 1     |
| m-G/IP porous film                                          | 0.3       | 38     | 1267                   | 1.448    | 2310                 | 2     |
| Magnetic CNT paper                                          | 0.078     | 37     | 4744                   | 30       | 4330                 | 3     |
| rLGO film                                                   | 0.015     | 20.2   | 13467                  | 77.7     | 24300                | 4     |
| CNT/NR30 film                                               | 0.5       | 44.7   | 894                    | 20.6     | 2243                 | 5     |
| GNs/NFC film                                                | 0.013     | 43     | 33077                  | 61       | 98820                | 6     |
| GNR/PANI                                                    | 3.4       | 34     | 100                    | 56.2     | -                    | 7     |
| EG/LGE                                                      | 0.043     | 48.3   | 11233                  | 40.9     | 146700               | 8     |
| rGO/PI foam                                                 | 0.8       | 21     | 263                    | 11.4     | 0.8                  | 9     |
| AgNW/PANI                                                   | 0.013     | 51     | 39231                  | 44       | 402000               | 10    |
| $Ti_3C_2T_x$ foam                                           | 0.06      | 70     | 11667                  | 4        | 58000                | 11    |
| 87.5wt% Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub>       | 0.011     | 42.1   | 20272                  | 127      | 24050                |       |
| /PEDOT:PSS                                                  | 0.011     | 42.1   | 38273                  | 13./     | 34030                |       |
| 83.3wt% $Ti_3C_2T_x$                                        | 0.012     | 28.2   | 23500                  | 17.59    | 18320                | 10    |
| /PEDOT:PSS                                                  | 0.012     |        |                        |          |                      | 12    |
| 80wt% $Ti_3C_2T_x$                                          | 0.012     | 21.6   | 16615                  | 24.16    | 0220                 |       |
| /PEDOT:PSS                                                  | 0.015     | 21.0   | 10013                  | 24.10    | 8330                 |       |
| 90wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CNFs | 0.047     | 24     | 5106                   | 44.2     | 739.4                |       |
| 80wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CNFs | 0.074     | 26     | 3514                   | 60.2     | 115.5                | 13    |
| 50wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /CNFs | 0.167     | 25     | 1497                   | 135.4    | 13.44                |       |
| MXene/TOCNF                                                 | 0.038     | 39.6   | 10421                  | 212      | 2837                 | 14    |
| MXene/CNF/silver                                            | 0.046     | 50.7   | 11022                  | 32.1     | 588.2                | 15    |
| CNTs/Ti <sub>3</sub> C <sub>2</sub> /CNFs                   | 0.038     | 38.4   | 10105                  | 97.9     | 2506.6               | 16    |
| 90wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /ANFs | 0.015     | 32.84  | 21893                  | 33.07    | 62827.2              |       |
| 50wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /ANFs | 0.020     | 23.97  | 11985                  | 83.92    | 6960.6               | 17    |
| 20wt% d-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> /ANFs | 0.023     | 12.74  | 5539                   | 158.53   | 981.3                |       |
| MXene                                                       | 0.005     | 49     | 98000                  | 28.7     | 314300               | This  |
| MXene-Al II                                                 | 0.005     | 45     | 90000                  | 83.2     | 265600               | work  |
| MXene-Al V                                                  | 0.0044    | 41     | 93182                  | 69.2     | 92600                | WOIR  |

**Table S2.** Comparison of EMI shielding performances of the MXene-Al films with those reported in the literature.

## **References:**

- Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao and Z.-Z. Yu, *Adv. Funct. Mater.*, 2016, 26, 447-455.
- 2. J. Liu, H.-B. Zhang, Y. Liu, Q. Wang, Z. Liu, Y.-W. Mai and Z.-Z. Yu, Compos. Sci.

Technol., 2017, 151, 71-78.

- G.-H. Lim, S. Woo, H. Lee, K.-S. Moon, H. Sohn, S.-E. Lee and B. Lim, ACS Appl. Mater. Interfaces, 2017, 9, 40628-40637.
- P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y.-H. Kim and C. M. Koo, *Carbon*, 2015, 94, 494-500.
- L.-C. Jia, M.-Z. Li, D.-X. Yan, C.-H. Cui, H.-Y. Wu and Z.-M. Li, J. Mater. Chem. C, 2017, 5, 8944-8951.
- W. Yang, Y. Zhang, T. Liu, R. Huang, S. Chai, F. Chen and Q. Fu, ACS Sustainable Chem. Eng., 2017, 5, 9102-9113.
- A. Joshi, A. Bajaj, R. Singh, A. Anand, P. S. Alegaonkar and S. Datar, *Composites, Part B*, 2015, 69, 472-477.
- Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen and Q. Fu, *Carbon*, 2018, 133, 435-445.
- 9. Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, *RSC Adv.*, 2015, 5, 24342-24351.
- F. Fang, Y.-Q. Li, H.-M. Xiao, N. Hu and S.-Y. Fu, J. Mater. Chem. C, 2016, 4, 4193-4203.
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z.-Z. Yu, *Adv. Mater.*, 2017, 29, 1702367.
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, ACS Appl. Mater. Interfaces, 2018, 10, 44787-44795.
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang, M.-G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.

- 14. Z. Y. Zhan, Q. C. Song, Z. H. Zhou and C. H. Lu, J. Mater. Chem. C, 2019, 7, 9820-9829.
- W. Xin, G.-Q. Xi, W.-T. Cao, C. Ma, T. Liu, M.-G. Ma and J. Bian, *RSC Adv.*, 2019, 9, 29636-29644.
- 16. W. Cao, C. Ma, S. Tan, M. Ma, P. Wan and F. Chen, *Nano-Micro Lett.*, 2019, 11, 72.
- F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang and Q. Ma, *Nanoscale*, 2019, 11, 23382-23391.