Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supporting information

A Dual-functional Intelligent Logic Detector Based on Ln-MOFs: First Visual Logical Probe for Two-dimensional Monitoring of Pyrethroid Biomarkers

Yu Zhang^a, Xiao Lian^a and Bing Yan* a,b

^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China

^b School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

* Corresponding author Email addresses: byan@tongji.edu.cn (Bing Yan)

Scheme S1 The structure of Hf-MOF and Eu³⁺@Hf-MOF.

Figure S1 Thermal gravimetric analysis (TGA) curves for Hf-MOF and Eu³⁺@Hf-MOF.

Figure S2 FT-IR spectra of Hf-MOF and Eu³⁺@Hf-MOF.

Figure S3 The O 1S XPS spectra of Hf-MOF and Eu³⁺@Hf-MOF.

Figure S4 The energy dispersive X-ray spectroscopy (EDX) of (a) Hf-MOF and (b) Eu³⁺@Hf-MOF.

Figure S5 The excitation (red line) and emission (green line) spectra of (a) Hf-MOF and (b) Eu³⁺@Hf-MOF.

Figure S6 The corresponding CIE chromaticity diagram of (a) Hf-MOF and (b) Eu³⁺@Hf-MOF.

Figure S7 (a) Hour to hour fluorescence stability of Eu³⁺@Hf-MOF; (b) Hour to hour structure stability of Eu³⁺@Hf-MOF.

Figure S8 Variation of luminescent intensity of Eu³⁺@Hf-MOF with different immersion time in (a) 3-PBA and (b) 3-PBD.

Figure S9 Luminescence responses (red: without 3-PBA and 3-PBD; blue: with 3-PBA; green: with 3-PBD) of Eu³⁺@Hf-MOF toward different solutions of (a) serum and (b) urine.

Figure S10 Luminescence spectra of Eu³⁺@Hf-MOF when immersing into different concentrations of (a) 3-PBA and (b) 3-PBD.

Figure S11 Linear curve of the luminescent intensity of Eu³⁺@Hf-MOF toward different concentrations of (a) 3-PBA and (b) 3-PBD.

Table S1 The weight percentage and atomic percentage of all elements in Eu³⁺@Hf-MOF determined by energy dispersive X-ray spectroscopy (EDX).

Materials	Element	Weight%	Atomic%		
	С	59.54	77.54		
	0	21.24	20.76		
Eu ^s @HI-IVIOF	Hf	18.10	1.59		
	Eu	1.13	0.12		

Table S2 The ICP-MS studies of Hf-MOF and Eu³⁺@Hf-MOF.

Samples	Hf(ppm)	Eu(ppm)	Hf/Eu		
Hf-MOF	12.337	/	/		
Eu³⁺@Hf-MOF	13.542	1.845	7.340:1		

Table S3 Lifetimes of Eu³⁺@Hf-MOF and Eu³⁺@Hf-MOF immersed 3-PBA and 3-PBD when

excited at 313nm and 322nm respectively.

Lifetimes(µs)	λ_{ex} =313nm	λ_{ex} =322nm			
Origin	370.83µs	361.26µs			
3-PBA	325.75µs	326.21µs			
3-PBD	381.07µs	349.68µs			

Table S4 The truth table of Gate 1, Gate 2.

(a)		(b)		
	Gate 1	. ,		

Gate	2
------	---

Inpu	Output 1	
$\lambda_{_{313nm}}$	λ _{614nm}	
1	0	1
1	1	0
0	0	0
0	1	0

	Output 2				
λ _{322nm}	E _(A)	Output 1	Light 2		
1	0	0	0		
1	1	0	1		
0	0	0	0		
0	1	0	0		
1	0	1	0		
1	1	1	0		
0	0	1	0		
0	1	1	0		

Table S5 The truth table of Gate 3, Gate 4 and Gate 5

(a	1)	Gate 3				(b) Gate 4				(c	(c) Gate 5				
	Input 3 Output 3			Output 3		Input 4 Output 4			Input 5				Output 5		
	C _{3-PBA} <10 ⁻⁸ M	$\lambda_{_{313nm}}$	Output 2	Light 1		С _{3-РВА} <10 ⁻⁵ М	$\lambda_{_{313nm}}$	Output 3	Light 2		С _{3-РВА} <10 ⁻² М	$\lambda_{_{313nm}}$	Output 4	Light 3	
	1	0	0	0		1	0	0	0		1	0	0	0	
	1	1	0	0		1	1	0	0		1	1	0	0	
	0	0	0	0		0	0	0	0		0	0	0	0	
	0	1	0	0		0	1	0	0		0	1	0	0	
	1	0	1	0		1	0	1	0		1	0	1	0	
	1	1	1	0		1	1	1	0		1	1	1	0	
	0	0	1	0		0	0	1	0		0	0	1	0	
	0	1	1	1		0	1	1	1		0	1	1	1	