Electronic Supplementary Information for

Enhancing triplet sensitization ability of donoracceptor dyads via intramolecular triplet energy transfer

Shanshan Liu^a, Xiangyang Wang^a, Heyuan Liu^{c,*}, Li Shen^a, Dezhi Zhao^a, and Xiyou Li^{b,*}

^{a.} College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.

^{b.} School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.

^{c.} College of New Energy, China University of Petroleum (East China), Qingdao, Shandong,
 266580, China.

E-mail: xiyouli@upc.edu.cn; liuheyuan123@upc.edu.cn

Caption of Content

Fig. S1. Experimental isotopic pattern for the molecular ion of PdPor-2-DPA and PdPor-9-DPA shown in the MALDI-TOF mass spectra.

Fig. S2. ¹H NMR spectra of PdPor-2-DPA and PdPor-9-DPA in CDCl₃.

Fig. S3. Absorption spectra of PdPor-2-DPA, PdPor-9-DPA and mixed solution of PdTPP: DPA=1:1.

Fig. S4. Luminescence emission spectra of PdPor-2-DPA, PdPor-9-DPA and PdTPP.

Fig. S5. fs-TA spectra and single-wavelength dynamics of PdTPP.

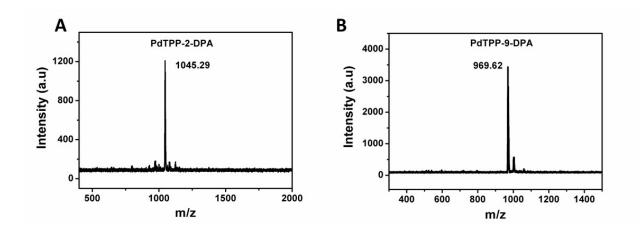

Fig. S6. Single-wavelength dynamics of PdTPP probed at 480 nm from nanosecond TA spectra.

Fig. S7-9. Comparison of TA spectra and single-wavelength dynamics of PdPor-2-DPA(**S7**), PdPor-9-DPA(**S8**) PdTPP (**S9**) between the raw data and the fitting data obtained from the global analysis.

Fig. S10. Dependence of luminescence spectra on the concentration of PdPor-2-DPA or PdPor-9-DPA in toluene with 532 nm laser excitation (25 mW).

Fig. S11. Absorption spectrum of PdTPP; fluorescence emission spectrum of DPA; upconversion emission spectrum of PdTPP and DPA, in deaerated toluene.

Table S1. The orientation angle of the phthalocyanine ring determined from polarized UV–vis absorbance of the QLS films of compounds **1-2**.

Fig. S1. Experimental isotopic pattern for the molecular ion of PdPor-2-DPA (A) and PdPor-9-DPA (B) shown in the MALDI-TOF mass spectra.

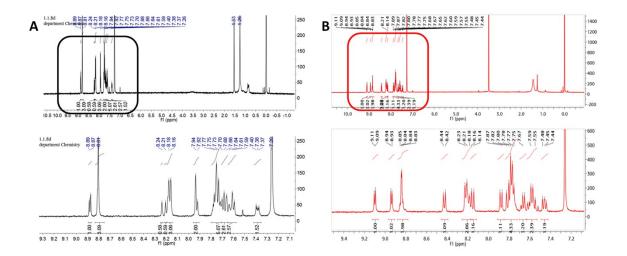
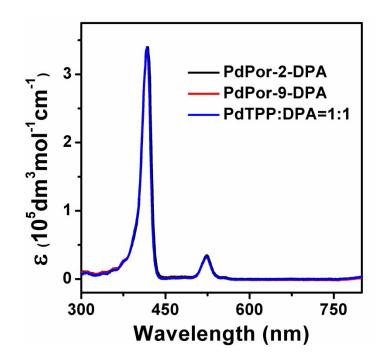
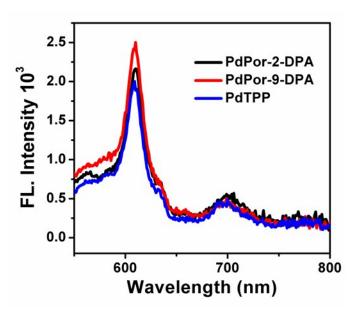




Fig. S2. ¹H NMR spectra of PdPor-2-DPA (A) and PdPor-9-DPA (B) in CDCl₃.

Fig. S3. Absorption spectra of PdPor-2-DPA, PdPor-9-DPA and mixed solution of PdTPP: DPA=1:1. PdPor-2-DPA and PdPor-9-DPA, $c = 1.0 \times 10^{-5}$; in mixed solution, PdTPP and DPA, $c = 1.0 \times 10^{-5}$ in deaerated toluene.

Fig. S4. Luminescence emission spectra of PdPor-2-DPA, PdPor-9-DPA and PdTPP.; $\lambda_{ex} = 532$ nm, $c = 1.0 \times 10^{-5}$ M in aerated Toluene, 293K.

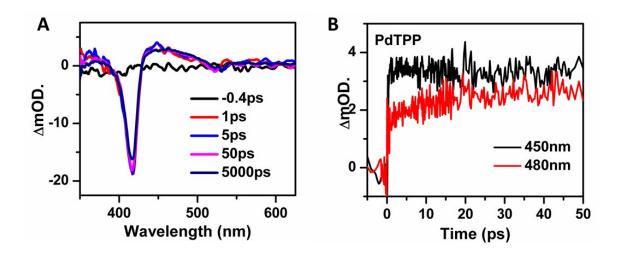


Fig. S5. *fs*-TA spectra (A) and single-wavelength dynamics probed at 450 and 480 nm (B) of PdTPP. $\lambda_{ex} = 532$ nm, c = 2.0×10⁻⁵ M in deaerated toluene, 293K.

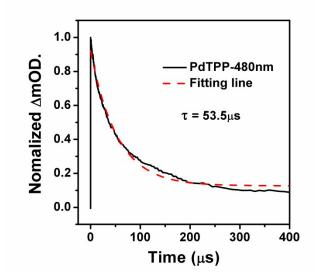


Fig. S6. Single-wavelength dynamics of PdTPP probed at 480 nm from nanosecond TA spectra. $\lambda_{ex} = 532$ nm, c = 2.0×10⁻⁵ M in deaerated toluene, 293 K.

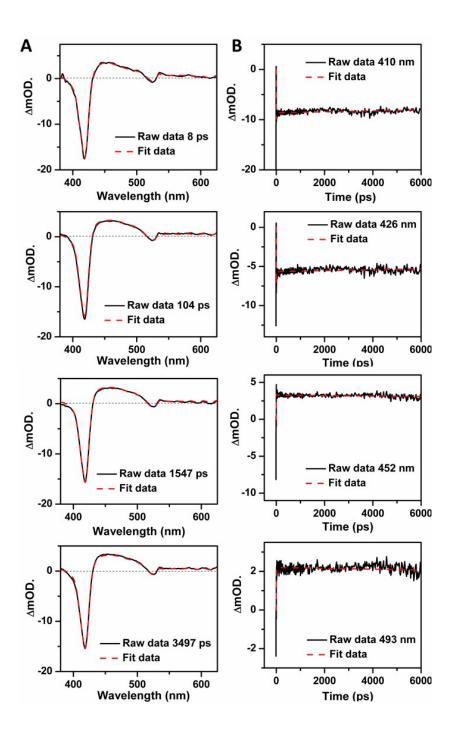


Fig. S7. Comparison of TA spectra(A) and single-wavelength dynamics(B) of PdPor-2-DPA between the raw data and the fitting data in $S_1(PdPor^*-DPA) \rightarrow T_1(PdPor^*-DPA)$ model obtained from the global analysis.

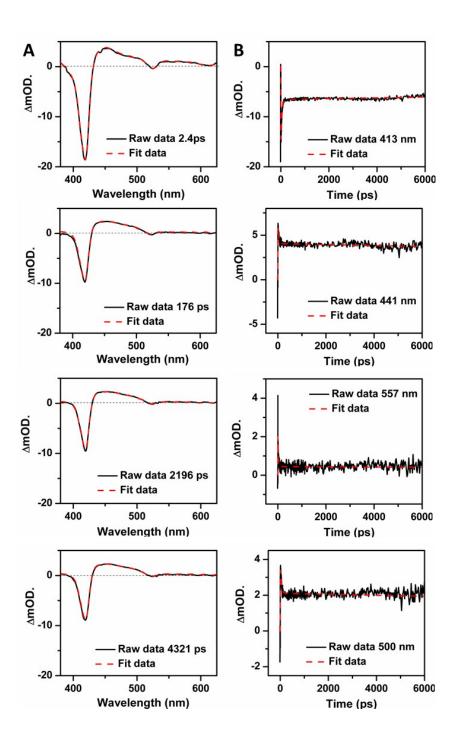


Fig. S8. Comparison of TA spectra (A) and single-wavelength dynamics (B) of PdPor-9-DPA between the raw data and the fitting data in $(S_1(PdPor^*-DPA) \rightarrow T_1(PdPor^*-DPA) \rightarrow T_1(PdPor^*-DPA)) \rightarrow T_1(PdPor^*-DPA)$ model obtained from the global analysis.

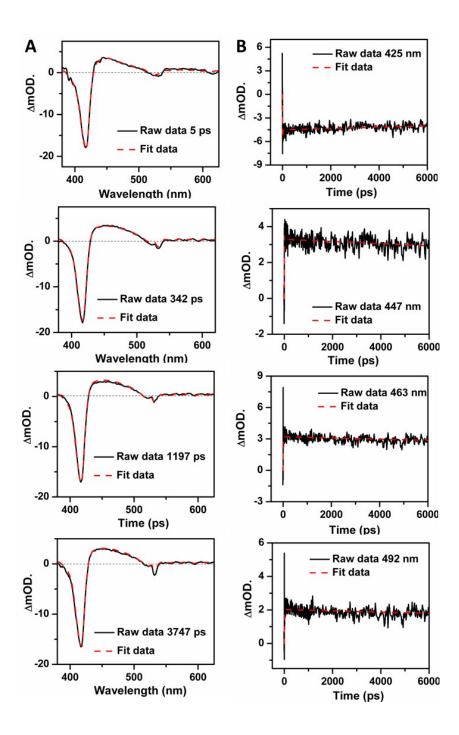
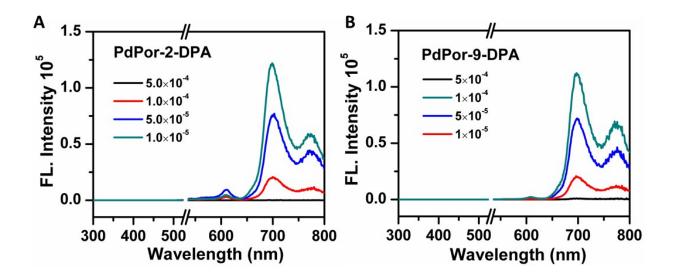
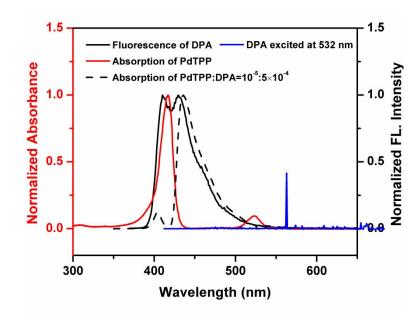




Fig. S9. Comparison of TA spectra(A) and single-wavelength dynamics(B) of PdTPP between the raw data and the fitting data in $S_1(PdPor^*) \rightarrow T_1(PdPor^*)$ model obtained from the global analysis.

Fig. S10. Dependence of luminescence spectra on the concentration of PdPor-2-DPA (A) or PdPor-9-DPA (B) in deaerated toluene with 532 nm laser excitation (25 mW).

Fig. S11. Absorption spectrum of PdTPP; fluorescence emission spectrum of DPA; upconversion emission spectrum of PdTPP and DPA, in deaerated toluene.

Compounds	Φ(%)	$\tau^{a}(\mu s)$ χ	2
PdTPP-2- DPA	0.26 ± 0.03	$\frac{108.98 \pm 0.1 (91.33\%)}{147.57 \pm 0.1 (8.67\%)} 1.0$	27
PdTPP-9- DPA	0.23 ± 0.03	$\begin{array}{c} 79.96 \pm 0.1 & (77.94\%) \\ 119.23 \pm 0.1 & (22.06\%) \end{array} 1.0$	19
PdTPP	0.41 ± 0.05	$\begin{array}{c} 77.04 \pm 0.1 & (72.00\%) \\ 215.33 \pm 0.1 & (28.00\%) \end{array} 1.1$	23

 Table S1. Phosphorescence quantum yields and lifetimes of these compounds at 293 K.

^aPhosphorescence lifetimes were monitored at 697 nm (c = 1.0×10^{-5} M).

•